Rao Ashwin, Haydel Jasmine, Ma Samuel, Thrift Aaron P, Nguyen-Wenker Theresa, El-Serag Hashem B
Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA.
Department of Internal Medicine, Baylor College of Medicine, Houston, TX, USA.
Dig Dis Sci. 2025 Apr 28. doi: 10.1007/s10620-025-09069-w.
Identifying patients likely to develop dysplasia or malignancy is critical for effective surveillance in patients with Barrett's Esophagus (BE). However, current predictive models are limited. We evaluated the performance of machine learning (ML) models in predicting incident dysplasia or malignancy in a cohort of veteran patients with BE.
We analyzed data from 598 patients newly diagnosed with non-dysplastic BE (NDBE), BE indefinite for dysplasia (BE-IND), and BE with non-persistent low-grade dysplasia (LGD) at the Michael DeBakey Veterans Affairs Medical Center from November 1990 to January 2019 with follow-up through January 2024. Progressors were patients who developed persistent LGD, HGD, or EAC within 5 years of index endoscopy. Six models were evaluated, encompassing regression and ensemble-based ML methods.
Of 598 qualifying patients, 61 (10.2%) progressed. Longer segments and indefinite/non-persistent LGD pathology were associated with higher risk of progression in unadjusted analyses. BE segment length remained significant on multivariate analysis (OR 1.26; 95% CI 1.17-1.36 per 1 cm increase). A decision tree (DT) model, using only segment length, achieved the highest discrimination (AUROC = 0.79) and excellent sensitivity (93.3%). The DT model also identified segment length thresholds for risk stratification: < 0.95 cm (minimal risk), 0.95-2.44 cm (low), 2.44-9.45 cm (moderate), > 9.45 cm (high).
A simple, interpretable DT model with segment length as the sole predictor outperformed regression and complex ML-based models in predicting BE progressors. Findings align with European Society of Gastrointestinal Endoscopy (ESGE) guidelines suggesting tailored surveillance based on segment length and provide actionable thresholds. These results offer a practical ML tool for BE surveillance.
识别可能发生发育异常或恶性肿瘤的患者对于巴雷特食管(BE)患者的有效监测至关重要。然而,目前的预测模型存在局限性。我们评估了机器学习(ML)模型在预测一组退伍军人BE患者发生发育异常或恶性肿瘤方面的性能。
我们分析了1990年11月至2019年1月在迈克尔·德巴基退伍军人事务医疗中心新诊断为非发育异常性BE(NDBE)、发育异常不确定的BE(BE-IND)和非持续性低级别发育异常(LGD)的BE患者的数据,并随访至2024年1月。进展者是指在索引内镜检查后5年内发生持续性LGD、高级别发育异常(HGD)或食管腺癌(EAC)的患者。评估了六种模型,包括基于回归和集成的ML方法。
在598名符合条件的患者中,61名(10.2%)病情进展。在未调整分析中,较长的节段和不确定/非持续性LGD病理与较高的进展风险相关。在多变量分析中,BE节段长度仍然具有显著性(每增加1厘米,OR 1.26;95% CI 1.17-1.36)。仅使用节段长度的决策树(DT)模型实现了最高的辨别力(AUROC = 0.79)和出色的敏感性(93.3%)。DT模型还确定了风险分层的节段长度阈值:< 0.95厘米(最低风险)、0.95-2.44厘米(低风险)、2.44-9.45厘米(中度风险)、> 9.45厘米(高风险)。
一个简单、可解释的以节段长度作为唯一预测因子的DT模型在预测BE进展者方面优于回归模型和基于复杂ML的模型。研究结果与欧洲胃肠内镜学会(ESGE)的指南一致,该指南建议根据节段长度进行定制监测,并提供了可操作的阈值。这些结果为BE监测提供了一个实用的ML工具。