Suppr超能文献

药物智能体:基于多智能体大语言模型的药物-靶点相互作用预测推理

DruGagent: Multi-Agent Large Language Model-Based Reasoning for Drug-Target Interaction Prediction.

作者信息

Inoue Yoshitaka, Song Tianci, Wang Xinling, Luna Augustin, Fu Tianfan

机构信息

Dept of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA.

Computational Biology Branch, National Library of Medicine, Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD, USA.

出版信息

ArXiv. 2025 Apr 7:arXiv:2408.13378v4.

Abstract

Advancements in large language models (LLMs) allow them to address diverse questions using human-like interfaces. Still, limitations in their training prevent them from answering accurately in scenarios that could benefit from multiple perspectives. Multi-agent systems allow the resolution of questions to enhance result consistency and reliability. While drug-target interaction (DTI) prediction is important for drug discovery, existing approaches face challenges due to complex biological systems and the lack of interpretability needed for clinical applications. DrugAgent is a multi-agent LLM system for DTI prediction that combines multiple specialized perspectives with transparent reasoning. Our system adapts and extends existing multi-agent frameworks by (1) applying coordinator-based architecture to the DTI domain, (2) integrating domain-specific data sources, including ML predictions, knowledge graphs, and literature evidence, and (3) incorporating Chain-of-Thought (CoT) and ReAct (Reason+Act) frameworks for transparent DTI reasoning. We conducted comprehensive experiments using a kinase inhibitor dataset, where our multi-agent LLM method outperformed the non-reasoning multi-agent model (GPT-4o mini) by 45% in F1 score (0.514 vs 0.355). Through ablation studies, we demonstrated the contributions of each agent, with the AI agent being the most impactful, followed by the KG agent and search agent. Most importantly, our approach provides detailed, human-interpretable reasoning for each prediction by combining evidence from multiple sources - a critical feature for biomedical applications where understanding the rationale behind predictions is essential for clinical decision-making and regulatory compliance. Code is available at https://anonymous.4open.science/r/DrugAgent-B2EA.

摘要

大语言模型(LLMs)的进步使其能够通过类人界面解决各种问题。然而,其训练中的局限性使其在需要多个视角才能受益的场景中无法准确回答。多智能体系统能够解决问题,以提高结果的一致性和可靠性。虽然药物-靶点相互作用(DTI)预测对药物发现很重要,但由于生物系统复杂以及临床应用所需的可解释性不足,现有方法面临挑战。DrugAgent是一种用于DTI预测的多智能体LLM系统,它将多个专业视角与透明推理相结合。我们的系统通过以下方式改编并扩展了现有的多智能体框架:(1)将基于协调器的架构应用于DTI领域;(2)整合特定领域的数据源,包括机器学习预测、知识图谱和文献证据;(3)纳入思维链(CoT)和反应式(Reason+Act)框架以进行透明的DTI推理。我们使用激酶抑制剂数据集进行了全面实验,在该实验中,我们的多智能体LLM方法在F1分数上比非推理多智能体模型(GPT-4o mini)高出45%(分别为0.514和0.355)。通过消融研究,我们证明了每个智能体的贡献,其中人工智能智能体影响最大,其次是知识图谱智能体和搜索智能体。最重要的是,我们的方法通过结合来自多个来源的证据,为每个预测提供了详细的、可人工解释的推理——这是生物医学应用的一个关键特征,在生物医学应用中,理解预测背后的原理对于临床决策和监管合规至关重要。代码可在https://anonymous.4open.science/r/DrugAgent-B2EA获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae4c/12036430/ddf9a09a41df/nihpp-2408.13378v4-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验