Suppr超能文献

使用机器学习和基于网络的工具对慢性病患者的肌肉减少症进行智能预测风险评估和管理。

Intelligent predictive risk assessment and management of sarcopenia in chronic disease patients using machine learning and a web-based tool.

作者信息

Rong Ke, Yi Ke Ran Gu Li Jiang, Zhou Changgui, Yi Xinglin

机构信息

Department of Pulmonary and Critical Care Medicine, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.

Kuitun Hospital of Ili Kazakh Autonomous Prefecture, Kuitun, Chongqing, 833200, China.

出版信息

Eur J Med Res. 2025 Apr 29;30(1):345. doi: 10.1186/s40001-025-02606-3.

Abstract

BACKGROUND

Individuals with chronic diseases are at higher risk of sarcopenia, and precise prediction is essential for its prevention. This study aims to develop a risk scoring model using longitudinal data to predict the probability of sarcopenia in this population over next 3-5 years, thereby enabling early warning and intervention.

METHODS

Using data from a nationwide survey initiated in 2011, we selected patient data records from wave 1 (2011-2012) and follow-up data from wave 3 (2015-2016) as the study cohort. Retrospective data collection included demographic information, health conditions, and biochemical markers. After excluding records with missing values, a total of 2891 adults with chronic conditions were enrolled. Sarcopenia was assessed based on the Asian Working Group for Sarcopenia (AWGS) 2019 guidelines. A generalized linear mixed model (GLMM) with random effects and diverse machine learning models were utilized to explore feature contributions to sarcopenia risk. The Recursive Feature Elimination (RFE) algorithm was employed to optimize the full Multilayer Perceptron (MLP) model and develop an online application tool.

RESULTS

Among total population, 580 (20.1%) individuals were diagnosed with sarcopenia in wave 1 (2011-2012), and 638 (22.1%) were diagnosed in wave 3 (2015-2016), while 2165 (74.9%) individuals were not diagnosed with sarcopenia across the study period. MLP model, performed better than other three classic machine learning models, demonstrated a ROC AUC of 0.912, a PR AUC of 0.401, a sensitivity of 0.875, a specificity of 0.844, a Kappa value of 0.376, and an F1 score of 0.44. According to MLP model-based SHapley Additive exPlanations (SHAP) scoring, weight, age, BMI, height, total cholesterol, PEF, and gender were identified as the most important features of chronic disease individuals for sarcopenia. Using the RFE algorithm, we selected six key variables-weight, age, BMI, height, total cholesterol, and gender-achieving an ROC AUC of about 0.9 for the online application tool.

CONCLUSION

We developed an MLP machine learning model that incorporates only six easily accessible variables, enabling the prediction of sarcopenia risk in individuals with chronic diseases. Additionally, we created a practical online application tool to assist in decision-making and streamline clinical assessments.

摘要

背景

慢性病患者患肌肉减少症的风险更高,准确预测对于预防肌肉减少症至关重要。本研究旨在利用纵向数据开发一种风险评分模型,以预测该人群在未来3至5年内发生肌肉减少症的概率,从而实现早期预警和干预。

方法

利用2011年发起的一项全国性调查数据,我们选取了第1波(2011 - 2012年)的患者数据记录和第3波(2015 - 2016年)的随访数据作为研究队列。回顾性数据收集包括人口统计学信息、健康状况和生化标志物。在排除缺失值记录后,共纳入2891名患有慢性病的成年人。根据亚洲肌肉减少症工作组(AWGS)2019年指南评估肌肉减少症。使用具有随机效应的广义线性混合模型(GLMM)和多种机器学习模型来探索特征对肌肉减少症风险的贡献。采用递归特征消除(RFE)算法优化全多层感知器(MLP)模型并开发在线应用工具。

结果

在总体人群中,第1波(2011 - 2012年)有580人(20.1%)被诊断为肌肉减少症,第3波(2015 - 2016年)有638人(22.1%)被诊断为肌肉减少症,而在整个研究期间有2165人(74.9%)未被诊断为肌肉减少症。MLP模型的表现优于其他三种经典机器学习模型,其ROC曲线下面积(AUC)为0.912,精确率-召回率曲线下面积(PR AUC)为0.401,灵敏度为0.875,特异度为0.844,Kappa值为0.376,F1分数为0.44。根据基于MLP模型的SHapley值加法解释(SHAP)评分,体重、年龄、体重指数(BMI)、身高、总胆固醇、呼气峰流速(PEF)和性别被确定为慢性病个体发生肌肉减少症的最重要特征。使用RFE算法,我们选择了六个关键变量——体重、年龄、BMI、身高、总胆固醇和性别——使在线应用工具的ROC AUC约为0.9。

结论

我们开发了一种仅包含六个易于获取变量的MLP机器学习模型,能够预测慢性病患者的肌肉减少症风险。此外,我们创建了一个实用的在线应用工具,以协助决策并简化临床评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1926/12039279/617f884cb4fb/40001_2025_2606_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验