Kotb Moatasem Mohammed Elsayed, Mohamed Maha Raof Abdel-Haleem, Fahmy Ashraf Yahya Hassan Ali, Mohra Ashraf Shawky Selim SayedAhmed
EE Dept. Benha faculty of engineering, Benha University, Benha, Egypt.
Sci Rep. 2025 May 5;15(1):15622. doi: 10.1038/s41598-025-98233-3.
In Orthogonal Frequency Division Multiplexing (OFDM) and Multiple-Input Multiple-Output-OFDM (MIMO-OFDM) systems, estimating Carrier Frequency Offset (CFO) is a critical challenge, particularly in degraded channel conditions where traditional methods struggle with precision and adaptability. This comparative study views various existing CFO estimation techniques and identifies three conventional methods-CFOest, CC, and AF-as benchmarks. To enhance estimation accuracy, a machine learning-based approach is proposed to effectively function across different channel conditions. Three distinct CFO estimators are developed using Kernel Support Vector Machine (KSVM), Linear Discriminant Analysis (LDA), and Artificial Neural Network (ANN), as this is a common strategy in machine learning for identifying optimal solutions. A comparative analysis of their performance demonstrates that the proposed approach outperforms traditional techniques by achieving lower Root Mean Square Error (RMSE), with the ANN-based CFO estimator performing best in larger estimation ranges, while the KSVM-based estimator excels in smaller ranges. To further enhance accuracy, a novel three-step machine learning-based approach is proposed, demonstrating significant improvements in accuracy through subsequent simulations when contrasted with conventional methods and single-step models.
在正交频分复用(OFDM)和多输入多输出正交频分复用(MIMO - OFDM)系统中,估计载波频率偏移(CFO)是一项关键挑战,尤其是在信道条件恶劣的情况下,传统方法在精度和适应性方面存在困难。本比较研究考察了各种现有的CFO估计技术,并将三种传统方法——CFOest、CC和AF——确定为基准。为了提高估计精度,提出了一种基于机器学习的方法,以在不同信道条件下有效发挥作用。使用核支持向量机(KSVM)、线性判别分析(LDA)和人工神经网络(ANN)开发了三种不同的CFO估计器,因为这是机器学习中寻找最优解的常用策略。对它们性能的比较分析表明,所提出的方法通过实现更低的均方根误差(RMSE)优于传统技术,基于ANN的CFO估计器在较大估计范围内表现最佳,而基于KSVM的估计器在较小范围内表现出色。为了进一步提高精度,提出了一种新颖的基于机器学习的三步方法,与传统方法和单步模型相比,通过后续仿真显示出精度有显著提高。