Kawano Yuko, Kawano Hiroki, Busch Stephanie, Li Allison J, Zhang Jane, Salama Noah A, Quarato Emily R, Georger Mary, Vdovichenko Nataliia, Azadniv Mitra, Byun Daniel K, LaMere Elizabeth A, LaMere Mark W, Liesveld Jane L, Becker Michael W, Calvi Laura M
James P. Wilmot Cancer Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States.
Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States.
JBMR Plus. 2025 Apr 24;9(6):ziaf047. doi: 10.1093/jbmrpl/ziaf047. eCollection 2025 Jun.
Stromal cells are critical regulators of hematopoietic stem/progenitor cells and skeletal homeostasis. Although precise systems for functional analysis are critical to investigate mechanistically bone and bone marrow (BM)-derived stromal cells, the establishment of reproducible, highly enriched ex vivo methods for stromal cell isolation, culture and evaluation have been challenging, leading to inconsistent data on stromal cell function. In this work, we carefully tested ex vivo culture of murine stromal cells from BM and bone and discovered abundant and persistent contamination of monocytes and macrophages. We succeeded in establishing highly enriched ex vivo culture system for stromal cells by eliminating persistent monocytes and macrophages using selection against the immunological markers F4/80, Ly6C, and CD45. Transcriptional and functional assays of enriched stromal cell culture revealed differential characteristics of stromal cells from different origins, a dormant signature for bone-derived cells and a highly proliferative progenitor-like signature for BM-derived cells. Monocyte and macrophage contamination reduced signatures of immature stromal cells such as expression levels of SOX9 and CD140a as well as the cells' ability to support hematopoietic stem and progenitor cells based on our growth factor-free co-culture system of hematopoietic cells and stromal cells followed by in vivo functional assays. The inhibitory effects of macrophages on stromal cells may be explained by their potent production of inflammatory cytokines such as CXCL2, CCL3, and complement factor (C1q) confirmed by protein immunoassay of culture supernatant, as well as the differential contribution of pre-osteoblasts to the stromal cell population. This study highlights the functional diversity of stromal cells depending on the microenvironment of origin while addressing a critical limitation of murine ex vivo systems. Our robust culture system enables the study of isolated stromal cells function as well as the impact of stromal cells-macrophage crosstalk.
基质细胞是造血干细胞/祖细胞和骨骼稳态的关键调节因子。尽管精确的功能分析系统对于从机制上研究骨和骨髓(BM)来源的基质细胞至关重要,但建立可重复、高度富集的体外基质细胞分离、培养和评估方法一直具有挑战性,导致关于基质细胞功能的数据不一致。在这项工作中,我们仔细测试了从小鼠骨髓和骨中体外培养基质细胞,发现单核细胞和巨噬细胞存在大量且持续的污染。我们通过针对免疫标记F4/80、Ly6C和CD45进行筛选,成功建立了高度富集的基质细胞体外培养系统,消除了持续存在的单核细胞和巨噬细胞。对富集的基质细胞培养物进行的转录和功能分析揭示了来自不同来源的基质细胞的差异特征,骨来源细胞具有休眠特征,而BM来源细胞具有高度增殖的祖细胞样特征。根据我们的造血细胞和基质细胞无生长因子共培养系统,随后进行体内功能测定,单核细胞和巨噬细胞污染降低了未成熟基质细胞的特征,如SOX9和CD140a的表达水平以及细胞支持造血干细胞和祖细胞的能力。巨噬细胞对基质细胞的抑制作用可能是由于它们大量产生炎症细胞因子,如CXCL2、CCL3和补体因子(C1q),这通过培养上清液的蛋白质免疫测定得到证实,以及前成骨细胞对基质细胞群体的不同贡献。这项研究强调了基质细胞根据起源微环境的功能多样性,同时解决了小鼠体外系统的一个关键局限性。我们强大的培养系统能够研究分离的基质细胞功能以及基质细胞 - 巨噬细胞相互作用的影响。