Suppr超能文献

使用深度学习模型对肌腱滑动声音进行定量评估及其分类

Quantitative Evaluation of Tendon Gliding Sounds and Their Classification Using Deep Learning Models.

作者信息

Nakabayashi Daiji, Inui Atsuyuki, Mifune Yutaka, Yamaura Kohei, Kato Tatsuo, Furukawa Takahiro, Hayashi Shinya, Matsumoto Tomoyuki, Matsushita Takehiko, Kuroda Ryosuke

机构信息

Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, JPN.

出版信息

Cureus. 2025 Apr 6;17(4):e81790. doi: 10.7759/cureus.81790. eCollection 2025 Apr.

Abstract

This study aims to develop and evaluate a deep learning (DL) model for classifying tendon gliding sounds recorded using digital stethoscopes (Nexteto, ShareMedical, Japan, Nagoya). Specifically, we investigate whether differences in tendon excursion and biomechanics produce distinct acoustic signatures that can be identified through spectrogram analysis and machine learning (ML). Tendon disorders often present characteristic tactile and acoustic features, such as clicking or resistance during movement. In recent years, artificial intelligence (AI) and ML have achieved significant success in medical diagnostics, particularly through pattern recognition in medical imaging. Leveraging these advancements, we recorded tendon gliding sounds from the thumb and index finger in healthy volunteers and transformed these recordings into spectrograms for analysis. Although the sample size was small, we performed classification based on the frequency characteristics of the spectrograms using DL models, achieving high classification accuracy. These findings indicate that AI-based models can accurately distinguish between different tendon sounds and strongly suggest their potential as a non-invasive diagnostic tool for musculoskeletal disorders. This approach could offer a non-invasive diagnostic tool for detecting tendon disorders such as tenosynovitis or carpal tunnel syndrome, potentially aiding early diagnosis and treatment planning.

摘要

本研究旨在开发并评估一种深度学习(DL)模型,用于对使用数字听诊器(Nexteto,日本名古屋ShareMedical公司)记录的肌腱滑动声音进行分类。具体而言,我们研究肌腱移动和生物力学的差异是否会产生独特的声学特征,这些特征能否通过频谱图分析和机器学习(ML)来识别。肌腱疾病通常表现出特征性的触觉和声学特征,例如运动时的咔嗒声或阻力。近年来,人工智能(AI)和机器学习在医学诊断中取得了显著成功,特别是通过医学成像中的模式识别。利用这些进展,我们记录了健康志愿者拇指和食指的肌腱滑动声音,并将这些记录转换为频谱图进行分析。尽管样本量较小,但我们使用DL模型根据频谱图的频率特征进行分类,取得了较高的分类准确率。这些发现表明,基于AI的模型可以准确区分不同的肌腱声音,并强烈表明它们作为肌肉骨骼疾病无创诊断工具的潜力。这种方法可以提供一种无创诊断工具,用于检测腱鞘炎或腕管综合征等肌腱疾病,可能有助于早期诊断和治疗规划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/569a/12054386/ebe0e58869e4/cureus-0017-00000081790-i01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验