Suppr超能文献

整合机器学习与随访变量以改善1型酪氨酸血症中肝细胞癌的早期检测:一项多中心研究

Integrating Machine Learning and Follow-Up Variables to Improve Early Detection of Hepatocellular Carcinoma in Tyrosinemia Type 1: A Multicenter Study.

作者信息

Fuenzalida Karen, Leal-Witt María Jesús, Acevedo Alejandro, Muñoz Manuel, Gudenschwager Camila, Arias Carolina, Cabello Juan Francisco, La Marca Giancarlo, Rizzo Cristiano, Pietrobattista Andrea, Spada Marco, Dionisi-Vici Carlo, Cornejo Verónica

机构信息

Laboratory of Genetic and Metabolic Diseases, Institute of Nutrition and Food Technology INTA, University of Chile, Av. El Libano 5524, Santiago 7830490, Chile.

Meyer Children's Hospital IRCCS, Viale Gaetano Pieraccini, 24, 50139 Florence, Italy.

出版信息

Int J Mol Sci. 2025 Apr 18;26(8):3839. doi: 10.3390/ijms26083839.

Abstract

Hepatocellular carcinoma (HCC) is a major complication of tyrosinemia type 1 (HT-1), an inborn error of metabolism affecting tyrosine catabolism. The risk of HCC is higher in late diagnoses despite treatment. Alpha-fetoprotein (AFP) is widely used to detect liver cancer but has limitations in early-stage HCC detection. This study aimed to implement a machine-learning (ML) approach to identify the most relevant laboratory variables to predict AFP alteration using constrained multidimensional data from Chilean and Italian HT-1 cohorts. A longitudinal retrospective study analyzed 219 records from 35 HT-1 patients, including 8 with HCC and 5 diagnosed through newborn screening. The dataset contained biochemical and demographic variables that were analyzed using the eXtreme Gradient Boosting algorithm, which was trained to predict abnormal AFP levels (>5 ng/mL). Four key variables emerged as significant predictors: alanine transaminase (ALT), alkaline phosphatase, age at diagnosis, and current age. ALT emerged as the most promising indicator of AFP alteration, potentially preceding AFP level changes and improving HCC detection specificity at a cut-off value of 29 UI/L (AUROC = 0.73). Despite limited data from this rare disease, the ML approach successfully analyzed follow-up biomarkers, identifying ALT as an early predictor of AFP elevation and a potential biomarker for HCC progression.

摘要

肝细胞癌(HCC)是1型酪氨酸血症(HT-1)的主要并发症,HT-1是一种影响酪氨酸分解代谢的先天性代谢缺陷。尽管接受了治疗,但晚期诊断时发生HCC的风险更高。甲胎蛋白(AFP)被广泛用于检测肝癌,但在早期HCC检测中存在局限性。本研究旨在采用机器学习(ML)方法,利用来自智利和意大利HT-1队列的受限多维数据,确定预测AFP改变的最相关实验室变量。一项纵向回顾性研究分析了35例HT-1患者的219份记录,其中8例患有HCC,5例通过新生儿筛查确诊。数据集包含生化和人口统计学变量,使用极限梯度提升算法进行分析,该算法经过训练以预测异常AFP水平(>5 ng/mL)。四个关键变量成为显著预测因子:丙氨酸转氨酶(ALT)、碱性磷酸酶、诊断时年龄和当前年龄。ALT成为AFP改变最有前景的指标,可能先于AFP水平变化,并在截断值为29 UI/L时提高HCC检测特异性(曲线下面积=0.73)。尽管这种罕见疾病的数据有限,但ML方法成功分析了随访生物标志物,将ALT确定为AFP升高的早期预测因子和HCC进展的潜在生物标志物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验