Kuznetsov Dmitry V, Liu Yixuan, Schowe Alicia M, Czamara Darina, Instinske Jana, Pahnke Charlotte K L, Nöthen Markus M, Spinath Frank M, Binder Elisabeth B, Diewald Martin, Forstner Andreas J, Kandler Christian, Mönkediek Bastian
Bielefeld University, Bielefeld, Germany.
Center for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany.
Clin Epigenetics. 2025 May 7;17(1):78. doi: 10.1186/s13148-025-01880-6.
Epigenetic aging estimators commonly track chronological and biological aging, quantifying its accumulation (i.e., epigenetic age acceleration) or speed (i.e., epigenetic aging pace). Their scores reflect a combination of inherent biological programming and the impact of environmental factors, which are suggested to vary at different life stages. The transition from adolescence to adulthood is an important period in this regard, marked by an increasing and, then, stabilizing epigenetic aging variance. Whether this pattern arises from environmental influences or genetic factors is still uncertain. This study delves into understanding the genetic and environmental contributions to variance in epigenetic aging across these developmental stages. Using twin modeling, we analyzed four estimators of epigenetic aging, namely Horvath Acceleration, PedBE Acceleration, GrimAge Acceleration, and DunedinPACE, based on saliva samples collected at two timepoints approximately 2.5 years apart from 976 twins of four birth cohorts (aged about 9.5, 15.5, 21.5, and 27.5 years at first and 12, 18, 24, and 30 years at second measurement occasion).
Half to two-thirds (50-68%) of the differences in epigenetic aging were due to unique environmental factors, indicating the role of life experiences and epigenetic drift, besides measurement error. The remaining variance was explained by genetic (Horvath Acceleration: 24%; GrimAge Acceleration: 32%; DunedinPACE: 47%) and shared environmental factors (Horvath Acceleration: 26%; PedBE Acceleration: 47%). The genetic and shared environmental factors represented the primary sources of stable differences in corresponding epigenetic aging estimators over 2.5 years. Age moderation analyses revealed that the variance due to individually unique environmental sources was smaller in younger than in older cohorts in epigenetic aging estimators trained on chronological age (Horvath Acceleration: 47-49%; PedBE Acceleration: 33-68%). The variance due to genetic contributions, in turn, potentially increased across age groups for epigenetic aging estimators trained in adult samples (Horvath Acceleration: 18-39%; GrimAge Acceleration: 24-43%; DunedinPACE: 42-57%).
Transition to adulthood is a period of the increasing variance in epigenetic aging. Both environmental and genetic factors contribute to this trend. The degree of environmental and genetic contributions can be partially explained by the design of epigenetic aging estimators.
表观遗传衰老估计器通常追踪实际年龄和生物学年龄,量化其积累情况(即表观遗传年龄加速)或速度(即表观遗传衰老速度)。它们的分数反映了内在生物学程序和环境因素影响的综合结果,而这些因素在不同生命阶段可能会有所不同。从青春期到成年期的转变在这方面是一个重要时期,其特征是表观遗传衰老方差先增加然后趋于稳定。这种模式是由环境影响还是遗传因素引起的仍不确定。本研究深入探讨了在这些发育阶段中,遗传和环境因素对表观遗传衰老方差的贡献。我们采用双胞胎模型,基于从四个出生队列的976对双胞胎中收集的唾液样本,分析了四种表观遗传衰老估计器,即霍瓦斯加速法(Horvath Acceleration)、PedBE加速法(PedBE Acceleration)、GrimAge加速法(GrimAge Acceleration)和达尼丁PACE法(DunedinPACE)。这些样本在两个时间点采集,相隔约2.5年,第一次测量时年龄分别约为9.5岁、15.5岁、21.5岁和27.5岁,第二次测量时年龄分别为12岁、18岁、24岁和30岁。
表观遗传衰老差异的一半至三分之二(50 - 68%)归因于独特环境因素,这表明除测量误差外,生活经历和表观遗传漂变也起了作用。其余方差由遗传因素(霍瓦斯加速法:24%;GrimAge加速法:32%;达尼丁PACE法:47%)和共享环境因素(霍瓦斯加速法:26%;PedBE加速法:47%)解释。遗传因素和共享环境因素是相应表观遗传衰老估计器在2.5年期间稳定差异的主要来源。年龄调节分析显示,在根据实际年龄训练的表观遗传衰老估计器中,较年轻队列中个体独特环境来源导致的方差小于较年长队列(霍瓦斯加速法:47 - 49%;PedBE加速法:33 - 68%)。相反,对于在成人样本中训练的表观遗传衰老估计器,遗传因素导致的方差可能随年龄组增加(霍瓦斯加速法:18 - 39%;GrimAge加速法:24 - 43%;达尼丁PACE法:42 - 57%)。
向成年期的转变是表观遗传衰老方差增加的时期。环境和遗传因素都促成了这一趋势。环境和遗传因素的贡献程度可部分由表观遗传衰老估计器的设计来解释。