Suppr超能文献

利用可解释机器学习预测入院时的后续护理需求以减少出院延迟。

Predicting onward care needs at admission to reduce discharge delay using explainable machine learning.

作者信息

Duckworth Chris, Burns Dan, Fernandez Carlos Lamas, Wright Mark, Leyland Rachael, Stammers Matthew, George Michael, Boniface Michael

机构信息

IT Innovation Centre, Digital Health and Biomedical Engineering, University of Southampton, Southampton, UK.

Southampton Business School, University of Southampton, Southampton, UK.

出版信息

Sci Rep. 2025 May 8;15(1):16033. doi: 10.1038/s41598-025-00825-6.

Abstract

Early identification of patients who require onward referral to social care can prevent delays to discharge from hospital. We introduce an explainable machine learning (ML) model to identify potential social care needs at the first point of admission. This model was trained using routinely collected data on patient admissions, hospital spells and discharge at a large tertiary hospital in the UK between 2017 and 2023. The model performance (one-vs-rest AUROC = 0.915 [0.907 0.924] (95% confidence interval), is comparable to clinician's predictions of discharge care needs, despite working with only a subset of the information available to the clinician. We find that ML and clinicians perform better for identifying different types of care needs, highlighting the added value of a potential system supporting decision making. We also demonstrate the ability for ML to provide automated initial discharge need assessments, in the instance where initial clinical assessment is delayed and provide reasoning for the decision. Finally, we demonstrate that combining clinician and machine predictions, in a hybrid model, provides even more accurate early predictions of onward social care requirements (OVR AUROC = 0.936 [0.928 0.943]) and demonstrates the potential for human-in-the-loop decision support systems in clinical practice.

摘要

早期识别需要转介至社会护理的患者可以避免出院延迟。我们引入了一种可解释的机器学习(ML)模型,以在患者入院时就识别出潜在的社会护理需求。该模型使用2017年至2023年期间英国一家大型三级医院常规收集的患者入院、住院时间和出院数据进行训练。尽管该模型仅使用了临床医生可用信息的一个子集,但其模型性能(一对多曲线下面积[AUROC]=0.915[0.907,0.924](95%置信区间))与临床医生对出院护理需求的预测相当。我们发现,机器学习和临床医生在识别不同类型的护理需求方面表现更好,这凸显了潜在的支持决策系统的附加价值。我们还展示了机器学习在初始临床评估延迟的情况下提供自动初步出院需求评估并为决策提供推理的能力。最后,我们证明,在混合模型中结合临床医生和机器的预测,可以更准确地早期预测后续社会护理需求(一对多曲线下面积[AUROC]=0.936[0.928,0.943]),并展示了临床实践中人工参与决策支持系统的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab01/12062306/ddd06af395d0/41598_2025_825_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验