Wijeratne Pavithra M, Ocando Connie, Grignard Bruno, Berglund Lars A, Raquez Jean-Marie, Zhou Qi
Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91, Stockholm, Sweden.
Laboratory of Polymeric and Composite Materials, Department of Chemistry, Faculty of Science, University of Mons, Mons 7000, Belgium.
Biomacromolecules. 2025 Jun 9;26(6):3481-3494. doi: 10.1021/acs.biomac.5c00113. Epub 2025 May 9.
Incorporating biobased nanofillers including cellulose nanocrystals (CNCs) and chitin nanocrystals (ChNCs) into nonisocyanate polyurethane (NIPU) offers a multifunctional approach to improving mechanical and thermal properties while promoting sustainability and green chemistry. Nanocomposites of segmented thermoplastic polyhydroxyurethane (PHU) from vanillyl alcohol bis(cyclocarbonate) (VABC), poly(tetramethylene oxide) diamine (PTMODA), and bis(aminomethyl) norbornane (NORB) reinforced with a low amount of CNCs and partially deacetylated ChNCs were prepared and characterized. Fourier transform infrared spectroscopy, atomic force microscopy, and small-angle X-ray scattering revealed that partially deacetylated ChNCs were covalently grafted to the PHU through aminolysis of carbonate end groups in the hard segment, while CNCs were mixed with the PHU without interfacial covalent bonding. Consequently, the PHU/ChNC nanocomposites showed nanophase separation with smaller hard domains compared to neat PHU, while the PHU/CNC nanocomposites exhibited a phase-mixed system with broader interface regions. Dynamic mechanical analysis and tensile tests further revealed that the PHU/ChNC nanocomposites demonstrated a 49-fold increase in Young's modulus, a 20-fold increase in ultimate tensile strength, and a three-order-of-magnitude enhancement in storage modulus in the rubbery state compared to the PHU/CNC nanocomposites, highlighting the profound influence of interfacial covalent linkages in enhancing the thermal mechanical performance of segmented PHU.
将包括纤维素纳米晶体(CNCs)和几丁质纳米晶体(ChNCs)在内的生物基纳米填料掺入非异氰酸酯聚氨酯(NIPU)中,提供了一种多功能方法,可改善机械性能和热性能,同时促进可持续性和绿色化学。制备并表征了由香草醇双(环碳酸酯)(VABC)、聚(四氢呋喃)二胺(PTMODA)和双(氨甲基)降冰片烷(NORB)制成的嵌段热塑性聚羟基聚氨酯(PHU)与少量CNCs和部分脱乙酰化的ChNCs增强的纳米复合材料。傅里叶变换红外光谱、原子力显微镜和小角X射线散射表明,部分脱乙酰化的ChNCs通过硬段中碳酸酯端基的氨解共价接枝到PHU上,而CNCs与PHU混合但没有界面共价键合。因此,与纯PHU相比,PHU/ChNC纳米复合材料显示出纳米相分离,硬域较小,而PHU/CNC纳米复合材料表现出具有更宽界面区域的相混合体系。动态力学分析和拉伸试验进一步表明,与PHU/CNC纳米复合材料相比,PHU/ChNC纳米复合材料在橡胶态下的杨氏模量提高了49倍,极限拉伸强度提高了20倍,储能模量提高了三个数量级,突出了界面共价键在增强嵌段PHU热机械性能方面的深远影响。