Kant Shashi, Das Sreyashi, Dutta Subhajeet, Mandal Kajal, Upadhyay Aditya, Sarangi Aditya N, Majumder Rajib, Tripathy Sucheta
Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata 700032, India.
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
DNA Res. 2025 May 28;32(3). doi: 10.1093/dnares/dsaf011.
Ascomycetes fungi produce carbohydrate-active enzymes that are prized in the biofuel industry. Comparative genome analysis of endophytic fungus Apiospora malaysiana with seven other closely related high quality genomes of endophytic and pathogenic organisms reveal that effectors and pathogenicity-related genes are predominantly localized within rapidly evolving gene-sparse regions rather than in the conserved region. This suggests bipartite genome architecture where the rapidly evolving region plays a role in host adaptation. Endophytic fungi adapt to plant invasion by enriching enzymes that degrade cellulose, hemicellulose, lignin, and pectin. In contrast, we observed that pathogenic fungi, especially N. oryzae, show a reduced number of secondary metabolites biosynthesis and catabolic genes, reflecting lifestyle adaptation. The presence of exclusive sporulating gene clusters in pathogen species could possibly indicate their pathogenic affiliation. Limited genome plasticity and low heterozygosity in A. malaysiana are in line with its predominant asexual life cycle choices in lab conditions. The secretome of A. malaysiana grown in cellulose-only media had more cellulase activities when compared to cultures grown in YPD media. Genes that were differentially up-regulated in cellulose-only media exhibited strong cellulose-degrading activity and genes involved in evading detection by the hosts surveillance system. Successful cloning and expression of selected CAZymes in bacterial expression systems with desirable physicochemical properties highlight the biotechnological potential of A. malaysiana for sustainable cellulolytic enzyme production. These findings position endophytes as valuable resources for cellulolytic enzyme research and broader bio-industrial applications.
子囊菌纲真菌产生的碳水化合物活性酶在生物燃料行业备受青睐。对内生真菌马来西亚阿皮孢菌与其他七种密切相关的高质量内生及致病生物基因组进行比较基因组分析发现,效应子和致病相关基因主要定位于快速进化的基因稀疏区域,而非保守区域。这表明存在二分基因组结构,其中快速进化区域在宿主适应中发挥作用。内生真菌通过富集降解纤维素、半纤维素、木质素和果胶的酶来适应植物侵染。相比之下,我们观察到致病真菌,尤其是稻瘟病菌,其次级代谢产物生物合成和分解代谢基因数量减少,这反映了其生活方式的适应性。病原菌物种中存在独特的产孢基因簇可能表明它们的致病属性。马来西亚阿皮孢菌有限的基因组可塑性和低杂合性与其在实验室条件下主要的无性生命周期选择一致。与在YPD培养基中培养的菌株相比,在仅含纤维素的培养基中生长的马来西亚阿皮孢菌的分泌蛋白组具有更高的纤维素酶活性。在仅含纤维素的培养基中差异上调的基因表现出强大的纤维素降解活性,以及参与逃避宿主监测系统检测的基因。在具有理想理化性质的细菌表达系统中成功克隆和表达选定的碳水化合物活性酶,突出了马来西亚阿皮孢菌在可持续纤维素分解酶生产方面的生物技术潜力。这些发现将内生菌定位为纤维素分解酶研究和更广泛生物工业应用的宝贵资源。