Suppr超能文献

单晶体管有机电化学神经元。

Single-transistor organic electrochemical neurons.

作者信息

Ji Junpeng, Gao Dace, Wu Han-Yan, Xiong Miao, Stajkovic Nevena, Latte Bovio Claudia, Yang Chi-Yuan, Santoro Francesca, Tu Deyu, Fabiano Simone

机构信息

Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden.

Institute of Biological Information Processing IBI-3 Bioelectronics, Forschungszentrum Jülich, Jülich, Germany.

出版信息

Nat Commun. 2025 May 9;16(1):4334. doi: 10.1038/s41467-025-59587-4.

Abstract

Neuromorphic devices that mimic the energy-efficient sensing and processing capabilities of biological neurons hold significant promise for developing bioelectronic systems capable of precise sensing and adaptive stimulus-response. However, current silicon-based technologies lack biocompatibility and rely on operational principles that differ from those of biological neurons. Organic electrochemical neurons (OECNs) address these shortcomings but typically require multiple components, limiting their integration density and scalability. Here, we report a single-transistor OECN (1T-OECN) that leverages the hysteretic switching of organic electrochemical memtransistors (OECmTs) based on poly(benzimidazobenzophenanthroline). By tuning the electrolyte and driving voltage, the OECmTs switch between high- and low-resistance states, enabling action potential generation, dynamic spiking, and logic operations within a single device with dimensions comparable to biological neurons. The compact 1T-OECN design (~180 µm footprint) supports high-density integration, achieving over 62,500 neurons/cm on flexible substrates. This advancement highlights the potential for scalable, bio-inspired neuromorphic computing and seamless integration with biological systems.

摘要

模仿生物神经元的节能传感和处理能力的神经形态器件,对于开发能够进行精确传感和自适应刺激响应的生物电子系统具有重大前景。然而,当前的硅基技术缺乏生物相容性,且依赖于与生物神经元不同的工作原理。有机电化学神经元(OECN)解决了这些缺点,但通常需要多个组件,这限制了它们的集成密度和可扩展性。在此,我们报告了一种单晶体管OECN(1T-OECN),它利用基于聚(苯并咪唑苯并菲咯啉)的有机电化学记忆晶体管(OECmT)的滞后开关特性。通过调节电解质和驱动电压,OECmT在高电阻状态和低电阻状态之间切换,从而在尺寸与生物神经元相当的单个器件内实现动作电位生成、动态尖峰发放和逻辑运算。紧凑的1T-OECN设计(~180 µm占地面积)支持高密度集成,在柔性基板上实现了超过62,500个神经元/cm²。这一进展突出了可扩展的、受生物启发的神经形态计算以及与生物系统无缝集成的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2adc/12064751/7529499dc01d/41467_2025_59587_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验