Sushma B, Chinniah P, Ramesh P S, Mallala Balasubbareddy
Department of Information Technology, MLR Institute of Technology, Hyderabad, India.
Department of Electronics and Communication Engineering, St. Joseph College of Engineering, Sriperumbudur, Chennai, Tamil Nadu, India.
Electromagn Biol Med. 2025 May 10:1-23. doi: 10.1080/15368378.2025.2503334.
The rising prevalence of cardiac diseases necessitates advanced IoT-driven health monitoring systems for early detection and diagnosis. This study presents an efficient ECG-based cardiac disease prediction framework leveraging a multi-phase approach to enhance computational efficiency and classification accuracy. The Convolutional Lightweight Deep Auto-encoder Wiener Filter (CLDAWF) is employed for signal preprocessing, while the Quantized Discrete Haar Wavelet Transform (QD-HWT) extracts critical cardiac features, including P-wave fluctuations, QRS complex, and T-wave intervals. These refined features are classified using an optimized Epistemic Neural Network (ENN), whose parameters are fine-tuned via the Boosted Sooty Tern Optimization algorithm, improving accuracy and reducing system loss. The proposed model achieves 99.65% accuracy, demonstrating its effectiveness in real-time cardiac disease monitoring and offering a scalable, high-performance solution for IoT-based healthcare systems.
心脏病患病率的不断上升,需要先进的物联网驱动的健康监测系统来进行早期检测和诊断。本研究提出了一种基于心电图的高效心脏病预测框架,该框架采用多阶段方法来提高计算效率和分类准确率。卷积轻量级深度自动编码器维纳滤波器(CLDAWF)用于信号预处理,而量化离散哈尔小波变换(QD-HWT)提取关键的心脏特征,包括P波波动、QRS复合波和T波间期。这些经过优化的特征使用优化的认知神经网络(ENN)进行分类,其参数通过增强型乌黑燕鸥优化算法进行微调,提高了准确率并减少了系统损失。所提出的模型实现了99.65%的准确率,证明了其在实时心脏病监测中的有效性,并为基于物联网的医疗系统提供了一种可扩展的高性能解决方案。