Chen Tingnan, Chen Yutong, Zhou Zili, Zhu Ying, He Ling, Zhang Jing
College of Biomedical Engineering, Sichuan University, Chengdu, China.
Sichuan Second Hospital of TCM, Chengdu, China.
Front Physiol. 2025 Apr 28;16:1559389. doi: 10.3389/fphys.2025.1559389. eCollection 2025.
This study proposes an automated tongue analysis system that combines deep learning with traditional Chinese medicine to enhance the accuracy and objectivity of tongue diagnosis. The system includes a hardware device to provide a stable acquisition environment, an improved semi-supervised learning segmentation algorithm based on U2net, a high-performance colour correction module for standardising the segmented images, and a tongue image analysis algorithm that fuses different features according to the characteristics of each feature of the TCM tongue image. Experimental results demonstrate the system's performance and robustness in feature extraction and classification. The proposed methods ensure consistency and reliability in tongue analysis, addressing key challenges in traditional practices and providing a foundation for future correlation studies with endoscopic findings.
本研究提出了一种将深度学习与中医相结合的自动舌象分析系统,以提高舌诊的准确性和客观性。该系统包括一个提供稳定采集环境的硬件设备、一种基于U2net的改进半监督学习分割算法、一个用于标准化分割图像的高性能色彩校正模块,以及一种根据中医舌象图像各特征特点融合不同特征的舌象图像分析算法。实验结果证明了该系统在特征提取和分类方面的性能和鲁棒性。所提出的方法确保了舌象分析的一致性和可靠性,解决了传统方法中的关键挑战,并为未来与内镜检查结果的相关性研究奠定了基础。