Suppr超能文献

基于深度学习的辅助中医诊断自动舌象分析系统

Deep learning-based automated tongue analysis system for assisted Chinese medicine diagnosis.

作者信息

Chen Tingnan, Chen Yutong, Zhou Zili, Zhu Ying, He Ling, Zhang Jing

机构信息

College of Biomedical Engineering, Sichuan University, Chengdu, China.

Sichuan Second Hospital of TCM, Chengdu, China.

出版信息

Front Physiol. 2025 Apr 28;16:1559389. doi: 10.3389/fphys.2025.1559389. eCollection 2025.

Abstract

This study proposes an automated tongue analysis system that combines deep learning with traditional Chinese medicine to enhance the accuracy and objectivity of tongue diagnosis. The system includes a hardware device to provide a stable acquisition environment, an improved semi-supervised learning segmentation algorithm based on U2net, a high-performance colour correction module for standardising the segmented images, and a tongue image analysis algorithm that fuses different features according to the characteristics of each feature of the TCM tongue image. Experimental results demonstrate the system's performance and robustness in feature extraction and classification. The proposed methods ensure consistency and reliability in tongue analysis, addressing key challenges in traditional practices and providing a foundation for future correlation studies with endoscopic findings.

摘要

本研究提出了一种将深度学习与中医相结合的自动舌象分析系统,以提高舌诊的准确性和客观性。该系统包括一个提供稳定采集环境的硬件设备、一种基于U2net的改进半监督学习分割算法、一个用于标准化分割图像的高性能色彩校正模块,以及一种根据中医舌象图像各特征特点融合不同特征的舌象图像分析算法。实验结果证明了该系统在特征提取和分类方面的性能和鲁棒性。所提出的方法确保了舌象分析的一致性和可靠性,解决了传统方法中的关键挑战,并为未来与内镜检查结果的相关性研究奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc74/12066954/601c41aec459/fphys-16-1559389-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验