Sun Chaojie, Hu Junguo, Wang Qingyue, Zhu Chao, Chen Lei, Shi Chunmei
College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou 311300, China.
Zhejiang Provincial Key Laboratory of Forestry Intelligent Monitoring and Information Technology Research, Zhejiang A&F University, Hangzhou 311300, China.
Sensors (Basel). 2025 Apr 24;25(9):2687. doi: 10.3390/s25092687.
The real-time monitoring of animal postures through computer vision techniques has become essential for modern precision livestock management. To overcome the limitations of current behavioral analysis systems in balancing computational efficiency and detection accuracy, this study develops an optimized deep learning framework named YOLOv8-BCD specifically designed for ovine posture recognition. The proposed architecture employs a multi-level lightweight design incorporating enhanced feature fusion mechanisms and spatial-channel attention modules, effectively improving detection performance in complex farm environments with occlusions and variable lighting. Our methodology introduces three technical innovations: (1) Adaptive multi-scale feature aggregation through bidirectional cross-layer connections. (2) Context-aware attention weighting for critical region emphasis. (3) Streamlined detection head optimization for resource-constrained devices. The experimental dataset comprises 1476 annotated images capturing three characteristic postures (standing, lying, and side lying) under practical farming conditions. Comparative evaluations demonstrate significant improvements over baseline models, achieving 91.7% recognition accuracy with 389 FPS processing speed while maintaining 19.2% parameter reduction and 32.1% lower computational load compared to standard YOLOv8. This efficient solution provides technical support for automated health monitoring in intensive livestock production systems, showing practical potential for large-scale agricultural applications requiring real-time behavioral analysis.
通过计算机视觉技术对动物姿势进行实时监测已成为现代精准畜牧管理的关键。为克服当前行为分析系统在平衡计算效率和检测精度方面的局限性,本研究开发了一种专门为绵羊姿势识别设计的优化深度学习框架YOLOv8-BCD。所提出的架构采用了多层次轻量级设计,融入了增强的特征融合机制和空间通道注意力模块,有效提高了在存在遮挡和光照变化的复杂农场环境中的检测性能。我们的方法引入了三项技术创新:(1)通过双向跨层连接进行自适应多尺度特征聚合。(2)用于强调关键区域的上下文感知注意力加权。(3)针对资源受限设备的简化检测头优化。实验数据集包含1476张标注图像,这些图像捕捉了实际养殖条件下的三种特征姿势(站立、躺卧和侧卧)。对比评估表明,与基线模型相比有显著改进,在保持参数减少19.2%和计算负载比标准YOLOv8低32.1%的同时,以389 FPS的处理速度实现了91.7%的识别准确率。这种高效解决方案为集约化畜牧生产系统中的自动健康监测提供了技术支持,显示出在需要实时行为分析的大规模农业应用中的实际潜力。