Yu Mingzhao, Peterson Mallory R, Burgoine Kathy, Harbaugh Thaddeus, Olupot-Olupot Peter, Gladstone Melissa, Hagmann Cornelia, Cowan Frances M, Weeks Andrew, Morton Sarah U, Mulondo Ronald, Mbabazi-Kabachelor Edith, Schiff Steven J, Monga Vishal
IEEE Trans Med Imaging. 2025 May 15;PP. doi: 10.1109/TMI.2025.3570316.
This paper addresses the problem of detecting possible serious bacterial infection (pSBI) of infancy, i.e. a clinical presentation consistent with bacterial sepsis in newborn infants using cranial ultrasound (cUS) images. The captured image set for each patient enables multiview imagery: coronal and sagittal, with geometric overlap. To exploit this geometric relation, we develop a new learning framework, called the intersection-guided Crossview Local- and Image-level Fusion Network (CLIF-Net). Our technique employs two distinct convolutional neural network branches to extract features from coronal and sagittal images with newly developed multi-level fusion blocks. Specifically, we leverage the spatial position of these images to locate the intersecting region. We then identify and enhance the semantic features from this region across multiple levels using cross-attention modules, facilitating the acquisition of mutually beneficial and more representative features from both views. The final enhanced features from the two views are then integrated and projected through the image-level fusion layer, outputting pSBI and non-pSBI class probabilities. We contend that our method of exploiting multi-view cUS images enables a first of its kind, robust 3D representation tailored for pSBI detection. When evaluated on a dataset of 302 cUS scans from Mbale Regional Referral Hospital in Uganda, CLIF-Net demonstrates substantially enhanced performance, surpassing the prevailing state-of-the-art infection detection techniques.
本文探讨了利用颅脑超声(cUS)图像检测婴儿期可能的严重细菌感染(pSBI)问题,即与新生儿细菌性败血症一致的临床表现。为每位患者采集的图像集可实现多视图成像:冠状面和矢状面,且存在几何重叠。为利用这种几何关系,我们开发了一种新的学习框架,称为交叉引导的跨视图局部和图像级融合网络(CLIF-Net)。我们的技术采用两个不同的卷积神经网络分支,通过新开发的多级融合块从冠状面和矢状面图像中提取特征。具体而言,我们利用这些图像的空间位置来定位相交区域。然后,我们使用交叉注意力模块在多个级别上识别并增强该区域的语义特征,促进从两个视图中获取互利且更具代表性的特征。然后,将两个视图的最终增强特征进行整合,并通过图像级融合层进行投影,输出pSBI和非pSBI类概率。我们认为,我们利用多视图cUS图像的方法实现了首个专门为pSBI检测量身定制的强大3D表示。在乌干达姆巴莱地区转诊医院的302次cUS扫描数据集上进行评估时,CLIF-Net表现出显著增强的性能,超越了当前最先进的感染检测技术。