Khan Abdul Rauf, Naeem Ifra, Tchier Fairouz, Tolasa Fikadu Tesgera, Hussain Shahid
Department of Mathematics, Faculty of Sciences, Ghazi University, Dera Ghazi Khan, Pakistan.
Mathematics Department, College of Science, King Saud University, Riyad, Saudi Arabia.
Front Chem. 2025 May 2;13:1564809. doi: 10.3389/fchem.2025.1564809. eCollection 2025.
Pneumonia is the primary cause of mortality in preterm infants in developing nations; yet, early detection and treatment can significantly reduce mortality rates. Pharmaceutical researchers are diligently striving to identify avariety of drugs that might effectively cure pneumonia.
We are motivated to examine the quantitative structureproperty relationships (QSPR) of anti-pneumonia pharmaceuticals. We employed -Banhatti topological descriptors and analyzed the findings to achieve this. For estimation of physicochemical properties of pneumonia treatment drugs we utilized linear, quadratic, cubic, and biquadratic regression analyses.
The drugs comprise linezolid, ceftabiprole, and clarithromycin, among others. Topological descriptors enable the exploration of the complexity, connectivity, and other essential attributes of molecules. The quantitative structure-property relationship (QSPR) analysis of pharmaceuticals for illness treatment employing -Banhatti topological descriptors is an economical approach utilised by pharmaceutical researchers. We performed a QSPR analysis on 20 anti-pneumonia drugs to ascertain the most precise predictions for five properties: enthalpy, flash point, molecular weight, molar volume, and molar refractivity, employing five -Banhatti indices. To do this, we used linear, quadratic, cubic, and biquadratic regression analyses to find links between molecules and the physical and chemical properties of drugs used to treat pneumonia. Employing molecular descriptors and regression models to investigate chemical patterns is a cost-effective and theoretical methodology.
在发展中国家,肺炎是早产儿死亡的主要原因;然而,早期检测和治疗可显著降低死亡率。药物研究人员正在努力寻找各种可能有效治愈肺炎的药物。
我们致力于研究抗肺炎药物的定量构效关系(QSPR)。为此,我们采用了班哈蒂拓扑描述符并分析了研究结果。为了估计肺炎治疗药物的物理化学性质,我们使用了线性、二次、三次和双二次回归分析。
这些药物包括利奈唑胺、头孢比普和克拉霉素等。拓扑描述符能够探索分子的复杂性、连通性和其他基本属性。使用班哈蒂拓扑描述符对疾病治疗药物进行定量构效关系(QSPR)分析是药物研究人员采用的一种经济方法。我们对20种抗肺炎药物进行了QSPR分析,使用五个班哈蒂指数来确定对五种性质(焓、闪点、分子量、摩尔体积和摩尔折射度)的最精确预测。为此,我们使用线性、二次、三次和双二次回归分析来寻找分子与用于治疗肺炎的药物的物理和化学性质之间的联系。利用分子描述符和回归模型来研究化学模式是一种经济高效的理论方法。