Suppr超能文献

乳腺癌患者新辅助化疗前乳酸脱氢酶与白蛋白比值能否预测病理完全缓解?

Can pretreatment lactate dehydrogenase to albumin ratio predict pathological complete response after neoadjuvant chemotherapy in breast cancer patients?

作者信息

Savaş Gözde, Günel Nazan, Özet Ahmet

机构信息

Gazi University, School of Medicine, Department of Medical Oncology, Ankara, Turkey.

出版信息

J Med Biochem. 2025 Mar 21;44(2):339-346. doi: 10.5937/jomb0-43900.

Abstract

BACKGROUND

This study aims to evaluate the predictive significance of platelet lymphocyte ratio (PLR), neutrophillymphocyte ratio (NLR), lymphocyte monocyte ratio (LMR), systemic immune-inflammation (SII), prognostic nutritional index (PNI), haemoglobin, albumin, lymphocyte, and platelet (HALP) score and lactate dehydrogenase to albumin ratio (LAR) for pCR in breast cancer with neoadjuvant chemotherapy (NACT).

METHODS

A total of 121 patients who received NACT between February 2012 and November 2021 were included. LAR, NLR, PLR, MLR, SII, PNI and HALP were calculated using formulas. The cut-off value for markers was obtained by Receiver operating characteristic curve (ROC) analyses. Independent predictive factors for pCR were determined using multivariate regression analysis.

RESULTS

The pCR rate was achieved in 31.4% of patients. Median values of NLR, PLR, MLR, SII, PNI and HALP were similar in pCR (+) and pCR (-) (p>0.05). The median LAR value was significantly higher in pCR (+) than in pCR (-) (50.80 vs 42.62, respectively (p=0.002)). The optimal cut-off value of LAR was 46.27. Multivariate analysis showed that LAR ≥46.27 and HER-2 positivity were the independent predictive factors for pCR [OR=2.851 (95% CI=1.142-7.119, P=0.025), OR=3.431 (95% CI= 0.163-10.123, P=0.026), respectively].

CONCLUSIONS

LAR is a simple, inexpensive, and convenient method for predicting pCR in breast cancer with NACT.

摘要

背景

本研究旨在评估血小板淋巴细胞比率(PLR)、中性粒细胞淋巴细胞比率(NLR)、淋巴细胞单核细胞比率(LMR)、全身免疫炎症指数(SII)、预后营养指数(PNI)、血红蛋白、白蛋白、淋巴细胞和血小板(HALP)评分以及乳酸脱氢酶与白蛋白比率(LAR)对新辅助化疗(NACT)的乳腺癌患者病理完全缓解(pCR)的预测意义。

方法

纳入2012年2月至2021年11月期间接受NACT的121例患者。使用公式计算LAR、NLR、PLR、MLR、SII、PNI和HALP。通过受试者工作特征曲线(ROC)分析获得标志物的临界值。使用多因素回归分析确定pCR的独立预测因素。

结果

31.4%的患者实现了pCR。NLR、PLR、MLR、SII、PNI和HALP的中位数在pCR(+)组和pCR(-)组中相似(p>0.05)。pCR(+)组的LAR中位数显著高于pCR(-)组(分别为50.80和42.62,p = 0.002)。LAR的最佳临界值为46.27。多因素分析显示,LAR≥46.27和HER-2阳性是pCR的独立预测因素[OR分别为2.851(95%CI = 1.142 - 7.119,P = 0.025),OR为3.431(95%CI = 0.163 - 10.123,P = 0.026)]。

结论

LAR是预测NACT的乳腺癌患者pCR的一种简单、廉价且便捷的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eddd/12085182/5443b3dcdf11/jomb-44-2-2502339S_g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验