Suppr超能文献

通过潜在动力学的对齐来稳定脑机接口。

Stabilizing brain-computer interfaces through alignment of latent dynamics.

作者信息

Karpowicz Brianna M, Ali Yahia H, Wimalasena Lahiru N, Sedler Andrew R, Keshtkaran Mohammad Reza, Bodkin Kevin, Ma Xuan, Rubin Daniel B, Williams Ziv M, Cash Sydney S, Hochberg Leigh R, Miller Lee E, Pandarinath Chethan

机构信息

Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA.

Center for Machine Learning, Georgia Institute of Technology, Atlanta, GA, USA.

出版信息

Nat Commun. 2025 May 19;16(1):4662. doi: 10.1038/s41467-025-59652-y.

Abstract

Intracortical brain-computer interfaces (iBCIs) restore motor function to people with paralysis by translating brain activity into control signals for external devices. In current iBCIs, instabilities at the neural interface result in a degradation of decoding performance, which necessitates frequent supervised recalibration using new labeled data. One potential solution is to use the latent manifold structure that underlies neural population activity to facilitate a stable mapping between brain activity and behavior. Recent efforts using unsupervised approaches have improved iBCI stability using this principle; however, existing methods treat each time step as an independent sample and do not account for latent dynamics. Dynamics have been used to enable high-performance prediction of movement intention, and may also help improve stabilization. Here, we present a platform for Nonlinear Manifold Alignment with Dynamics (NoMAD), which stabilizes decoding using recurrent neural network models of dynamics. NoMAD uses unsupervised distribution alignment to update the mapping of nonstationary neural data to a consistent set of neural dynamics, thereby providing stable input to the decoder. In applications to data from monkey motor cortex collected during motor tasks, NoMAD enables accurate behavioral decoding with unparalleled stability over weeks- to months-long timescales without any supervised recalibration.

摘要

皮层内脑机接口(iBCIs)通过将大脑活动转化为外部设备的控制信号,为瘫痪患者恢复运动功能。在当前的iBCIs中,神经接口的不稳定性导致解码性能下降,这就需要使用新的标记数据进行频繁的监督重新校准。一种潜在的解决方案是利用神经群体活动背后的潜在流形结构,以促进大脑活动与行为之间的稳定映射。最近使用无监督方法的研究利用这一原理提高了iBCI的稳定性;然而,现有方法将每个时间步视为独立样本,并未考虑潜在动态。动态信息已被用于实现对运动意图的高性能预测,也可能有助于提高稳定性。在这里,我们提出了一个用于动态非线性流形对齐(NoMAD)的平台,该平台使用动态循环神经网络模型来稳定解码。NoMAD使用无监督分布对齐将非平稳神经数据的映射更新为一组一致的神经动态,从而为解码器提供稳定的输入。在应用于猴子运动任务期间收集的运动皮层数据时,NoMAD能够在长达数周甚至数月的时间尺度上实现准确的行为解码,且无需任何监督重新校准,稳定性无与伦比。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32cc/12089531/a150bb2936a7/41467_2025_59652_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验