Alhosani Fatima, Islayem Deema, Almansoori Shamma, Zaka Awais, Nayfeh Laith, Rezk Ayman, Yousef Ahmed F, Pappa Anna Maria, Nayfeh Ammar
Department of Electrical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates.
Department of Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates.
Sci Rep. 2025 May 19;15(1):17321. doi: 10.1038/s41598-025-02372-6.
Biofilm-related infections remain a major concern in clinical settings due to the increasing challenge of antimicrobial resistance to conventional antimicrobial treatments. Surface coatings of nanomaterials that can effectively prevent biofilm formation and disrupt established biofilms are essential to addressing this challenge. In this study, a ZnO-Ag nanocomposite was synthesized via a dry chemical method and characterized using XRD, XPS, TEM, SEM-EDX, and AFM, confirming the presence of highly crystalline and pure ZnO and Ag nanoparticles with sharp nanoscale features. The nanocomposite demonstrated potent antibiofilm activity against Pseudomonas aeruginosa, a common Gram-negative biofilm-forming pathogen. Surface-coated glass slides prevented initial biofilm formation, while treatment with higher nanocomposite concentrations (≥ 0.25 g/L) significantly disrupted pre-formed biofilms and altered biofilm architecture, as shown by SEM and crystal violet assays. Mechanistic investigations suggested that nanoparticle surface sharpness may contribute to membrane disruption, and EPR analysis confirmed the generation of reactive oxygen species (ROS), particularly superoxide and methyl radicals, under light exposure. These results highlight the composite's strong potential for integration into surfaces prone to bacterial colonization, offering a practical approach for reducing biofilm-related complications.
由于传统抗菌治疗面临的抗菌耐药性挑战日益增加,生物膜相关感染仍然是临床环境中的一个主要问题。能够有效防止生物膜形成并破坏已形成生物膜的纳米材料表面涂层对于应对这一挑战至关重要。在本研究中,通过干化学方法合成了ZnO-Ag纳米复合材料,并使用XRD、XPS、TEM、SEM-EDX和AFM对其进行了表征,证实存在具有尖锐纳米级特征的高度结晶且纯净的ZnO和Ag纳米颗粒。该纳米复合材料对铜绿假单胞菌(一种常见的革兰氏阴性生物膜形成病原体)表现出强大的抗生物膜活性。表面涂覆的载玻片可防止初始生物膜形成,而较高浓度(≥0.25 g/L)的纳米复合材料处理可显著破坏预先形成的生物膜并改变生物膜结构,扫描电子显微镜和结晶紫测定法表明了这一点。机理研究表明,纳米颗粒表面的尖锐度可能有助于破坏膜,电子顺磁共振分析证实了在光照下会产生活性氧(ROS),特别是超氧自由基和甲基自由基。这些结果突出了该复合材料在整合到易发生细菌定植的表面方面的强大潜力,为减少生物膜相关并发症提供了一种实用方法。