Suppr超能文献

一种两阶段协变量调整的响应自适应富集设计。

A Two-Stage Covariate-Adjusted Response-Adaptive Enrichment Design.

作者信息

Yang Li, Diao Guoqing, Rosenberger William F

机构信息

Translational Biobehavioral and Health Disparities Branch, National Institutes of Health Clinical Center, Bethesda, MD.

Department of Biostatistics and Bioinformatics, The George Washington University, Washington, D.C.

出版信息

Stat Biopharm Res. 2024;16(4):547-557. doi: 10.1080/19466315.2024.2308877. Epub 2024 Feb 26.

Abstract

In the precision medicine paradigm, it is of interest to identify subgroups that benefit most from the treatment. However, the subgroup often cannot be identified until after a large-scale clinical trial. Clinical trials are often designed under the assumption of no treatment-by-covariate interaction effect and enroll all comers. This makes many patients go through unnecessary treatment and may decrease the efficiency of the trial. We propose a two-stage enrichment design that uses covariate-adjusted response-adaptive (CARA) allocation and a novel interaction pseudo-randomization test to evaluate the interaction effect in the interim analysis for binary and continuous outcomes. A pre-defined alpha level is used as the threshold to decide whether a subgroup will be identified and recruited in the second stage. If a below-threshold interaction effect is found, a regression model will be fit and the stratum with the largest treatment effect will be chosen as the best stratum. The trial will continue to the second stage with patients from the best stratum only. If the -value from the interim analysis is above the threshold, the trial continues with all patients. The primary aim is to test the treatment effect between treatment groups. Different CARA procedures are compared in terms of type I error rates, power, and ethical considerations. The CARA procedure that balances better between efficiency and ethics is used in the proposed two-stage enrichment design.

摘要

在精准医学范式中,识别出从治疗中获益最大的亚组很有意义。然而,亚组往往要到大规模临床试验之后才能确定。临床试验通常在不存在治疗与协变量交互效应的假设下设计,并纳入所有患者。这使得许多患者接受了不必要的治疗,可能会降低试验效率。我们提出了一种两阶段富集设计,该设计使用协变量调整的反应自适应(CARA)分配和一种新颖的交互伪随机化检验,以评估二元和连续结局的中期分析中的交互效应。使用预先定义的α水平作为阈值,来决定是否在第二阶段识别并招募一个亚组。如果发现交互效应低于阈值,将拟合回归模型,并选择治疗效果最大的层作为最佳层。试验将仅对来自最佳层的患者进入第二阶段。如果中期分析的P值高于阈值,试验将对所有患者继续进行。主要目的是检验治疗组之间的治疗效果。比较了不同CARA程序在I型错误率、检验效能和伦理考量方面的差异。在所提出的两阶段富集设计中使用了在效率和伦理之间能更好平衡的CARA程序。

相似文献

1
A Two-Stage Covariate-Adjusted Response-Adaptive Enrichment Design.
Stat Biopharm Res. 2024;16(4):547-557. doi: 10.1080/19466315.2024.2308877. Epub 2024 Feb 26.
4
On the achievability of efficiency bounds for covariate-adjusted response-adaptive randomization.
Stat Methods Med Res. 2025 Mar 31:9622802251327689. doi: 10.1177/09622802251327689.
5
A Unified Family of Covariate-Adjusted Response-Adaptive Designs Based on Efficiency and Ethics.
J Am Stat Assoc. 2015 Apr 22;110(509):357-367. doi: 10.1080/01621459.2014.903846.
6
Covariate-adjusted response-adaptive designs for semiparametric survival models.
Stat Methods Med Res. 2025 Sep;34(9):1697-1723. doi: 10.1177/09622802241287704. Epub 2024 Nov 25.
8
A family of Bayesian prognostic and predictive covariate-adjusted response-adaptive randomization designs.
Stat Methods Med Res. 2025 Sep;34(9):1838-1850. doi: 10.1177/09622802251335150. Epub 2025 May 14.
9
A class of Covariate-Adjusted Response-Adaptive Allocation Designs for Multitreatment Binary Response Trials.
J Biopharm Stat. 2018;28(5):809-823. doi: 10.1080/10543406.2018.1485683. Epub 2018 Jun 18.
10
Optimal design for inference on the threshold of a biomarker.
Stat Methods Med Res. 2024 Feb;33(2):321-343. doi: 10.1177/09622802231225964. Epub 2024 Jan 31.

本文引用的文献

1
Design considerations for two-stage enrichment clinical trials.
Biometrics. 2023 Sep;79(3):2565-2576. doi: 10.1111/biom.13805. Epub 2022 Dec 13.
2
Designing precision medicine trials to yield a greater population impact.
Biometrics. 2020 Jun;76(2):643-653. doi: 10.1111/biom.13161. Epub 2019 Nov 7.
3
Re-randomization tests in clinical trials.
Stat Med. 2019 May 30;38(12):2292-2302. doi: 10.1002/sim.8093. Epub 2019 Jan 22.
4
The Impact of Adaptive Design on Portfolio Optimization.
Ther Innov Regul Sci. 2016 Sep;50(5):615-619. doi: 10.1177/2168479016640020. Epub 2016 Jul 10.
5
Design and estimation in clinical trials with subpopulation selection.
Stat Med. 2018 Dec 20;37(29):4335-4352. doi: 10.1002/sim.7925. Epub 2018 Aug 7.
6
Randomization: The forgotten component of the randomized clinical trial.
Stat Med. 2019 Jan 15;38(1):1-12. doi: 10.1002/sim.7901. Epub 2018 Jul 25.
7
Biomarker threshold adaptive designs for survival endpoints.
J Biopharm Stat. 2018;28(6):1038-1054. doi: 10.1080/10543406.2018.1434191. Epub 2018 Feb 13.
8
An adaptive design for updating the threshold value of a continuous biomarker.
Stat Med. 2016 Nov 30;35(27):4909-4923. doi: 10.1002/sim.7042. Epub 2016 Jul 14.
10
On the use of randomization tests following adaptive designs.
J Biopharm Stat. 2016;26(3):466-74. doi: 10.1080/10543406.2015.1052486. Epub 2015 Jun 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验