Byun Andrew Jin Soo, Lane Erlend, Langholm Carsten, Flathers Matthew, Hall Mei-Hua, Torous John B
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
Division of Digital Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
Mol Psychiatry. 2025 May 20. doi: 10.1038/s41380-025-03054-5.
Heterogeneity in the clinical presentation of schizophrenia impairs both proper and preventative care. The digital phenotyping data gathered from an international multi-site cohort study in people with schizophrenia (SZ) offers a novel opportunity to explore clinically meaningful subtypes in the context of clinical, functional, and cognitive data. Using a set of behavioral features derived from smartphone digital phenotyping, clinical assessment of symptoms including PANSS, clinical assessment of cognition with BACS, and clinical assessment of functioning with the social functioning assessments over the target period of twelve months, we found that the international cohort of 74 patients were categorized into three well-defined clusters that suggest clinically actionable targets from differential correlations in each. Namely, the identified clusters seemed to share phenotypic traits with the affective psychosis with more severe symptomatic presentation, a non-affective SZ with functional impairment, and a higher functioning non-affective SZ cluster. Partial correlation analysis further highlighted the emergence of different features per cluster, where anxiety symptoms were most notable for one group, whereas psychotic symptoms were most notable for the other two. Importantly, we showcase an analysis pipeline that transparently addresses challenges of missing data and potential skew so that this research methodology can be applied to future prospective validation studies. This study hopes to build a foundation for future digital phenotyping clustering work by scaling up to new sites, and populations to uncover the nature and extent of heterogeneity in schizophrenia.
精神分裂症临床表现的异质性损害了恰当护理和预防护理。从一项针对精神分裂症(SZ)患者的国际多中心队列研究中收集的数字表型数据,为在临床、功能和认知数据背景下探索具有临床意义的亚型提供了新机会。利用从智能手机数字表型中得出的一组行为特征、包括阳性和阴性症状量表(PANSS)的症状临床评估、使用贝克认知评估量表(BACS)的认知临床评估以及在十二个月的目标时间段内使用社会功能评估进行的功能临床评估,我们发现74名患者的国际队列被分为三个明确的集群,每个集群中的差异相关性提示了具有临床可操作性的目标。具体而言,所识别的集群似乎与症状表现更严重的情感性精神病、有功能损害的非情感性SZ以及功能较好的非情感性SZ集群具有共同的表型特征。偏相关分析进一步突出了每个集群中不同特征的出现,其中焦虑症状在一组中最为显著,而精神病症状在另外两组中最为显著。重要的是,我们展示了一个分析流程,该流程透明地解决了数据缺失和潜在偏差的挑战,以便这种研究方法能够应用于未来的前瞻性验证研究。本研究希望通过扩大到新的地点和人群,为未来的数字表型聚类工作奠定基础,以揭示精神分裂症异质性的本质和程度。