Kanaley Kathleen, Murdock Maylin J, Qiu Tian, Liu Ertai, Seyram Schuyler E, Starzmann Dominik, Smart Lawrence B, Gold Kaitlin M, Jiang Yu
Plant Pathology and Plant Microbe Biology Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, 15 Castle Creek Drive, Geneva, NY, 14456, USA.
Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, 635 W. North Street, Geneva, NY, 14456, USA.
Plant Methods. 2025 May 20;21(1):65. doi: 10.1186/s13007-025-01376-7.
Imaging sensors (e.g., multispectral cameras) mounted on unmanned aerial systems (UAS) have emerged as a powerful tool for deriving insights about agricultural fields, from plant morphology phenotyping to plant disease monitoring. Advances in computer vision-based image analysis have enabled researchers to rapidly and accurately isolate crop spectra in UAS images. Specialty crops often employ unique production styles, such as trellising or inter-cropping. This presents a barrier to using existing image processing methodologies developed for broad-acre, row cropped systems (i.e. corn, wheat, soybean). Here, we present MAUI, a customizable image processing workflow built for specialty crops. Using a pathology research vineyard and hemp breeding trial as test cases, MAUI streamlines the generation of multispectral orthomosaic time-series, the segmentation of crops at the unit of research interest, and the extraction of crop spectra for downstream analysis.
We successfully used MAUI to collect and analyze UAS data at two field sites over two growing seasons. Of the five canopy segmentation methods we tested, a supervised deep convolutional neural network (DeepLabv3) and a vision foundation model (SAM) produced the most accurate crop masks for the vineyard and hemp images, with mean intersection over union (mIoU) values of 0.85 and 0.95, respectively. Segmentation accuracy decreased when we applied each method to the other dataset, highlighting the importance of modular, flexible segmentation workflows for UAS imaging analysis in specialty crops.
We present a modular framework to efficiently extract spectral data for specialty crops from UAS imagery. We highlight two kinds of segmentation applied to trellised and row cropping systems to demonstrate the modularity and versatility of the proposed methodology. MAUI improved spectral discrimination between individual plants and treatment groups for hemp and grapevine, respectively. With the containerized deployment package and open-source codebase, MAUI can be widely adopted by specialty crop researchers to facilitate the integration of UAS imagery analysis into routine research.
安装在无人机系统(UAS)上的成像传感器(如多光谱相机)已成为一种强大工具,可用于获取有关农田的信息,从植物形态表型分析到植物病害监测。基于计算机视觉的图像分析技术的进步使研究人员能够快速准确地在无人机图像中分离出作物光谱。特种作物通常采用独特的生产方式,如搭架栽培或间作。这为使用为大面积行播作物系统(如玉米、小麦、大豆)开发的现有图像处理方法带来了障碍。在此,我们介绍MAUI,这是一种为特种作物构建的可定制图像处理工作流程。以一个病理学研究葡萄园和一个大麻育种试验为例,MAUI简化了多光谱正射镶嵌时间序列的生成、以研究感兴趣的单元对作物进行分割以及提取作物光谱以进行下游分析的过程。
我们成功使用MAUI在两个生长季节的两个田间地点收集和分析了无人机数据。在我们测试的五种冠层分割方法中,一个监督深度卷积神经网络(DeepLabv3)和一个视觉基础模型(SAM)为葡萄园和大麻图像生成了最准确的作物掩膜,平均交并比(mIoU)值分别为0.85和0.95。当我们将每种方法应用于另一个数据集时,分割精度下降,这突出了模块化、灵活的分割工作流程对于特种作物无人机成像分析的重要性。
我们提出了一个模块化框架,以有效地从无人机图像中提取特种作物的光谱数据。我们重点介绍了应用于搭架栽培和行播作物系统的两种分割方法,以展示所提出方法的模块化和通用性。MAUI分别提高了大麻和葡萄个体植株与处理组之间的光谱区分度。借助容器化部署包和开源代码库,MAUI可被特种作物研究人员广泛采用,以促进将无人机图像分析集成到常规研究中。