Suppr超能文献

测试密集纵向抽样对异质人群统计功效和效应大小评估的影响:以周末心率变化作为替代干预的自然实验

Testing the Impact of Intensive, Longitudinal Sampling on Assessments of Statistical Power and Effect Size Within a Heterogeneous Human Population: Natural Experiment Using Change in Heart Rate on Weekends as a Surrogate Intervention.

作者信息

Soltani Severine, Viswanath Varun K, Kasl Patrick, Hartogensis Wendy, Dilchert Stephan, Hecht Frederick M, Mason Ashley E, Smarr Benjamin L

机构信息

Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, United States.

Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, United States.

出版信息

J Med Internet Res. 2025 May 21;27:e60284. doi: 10.2196/60284.

Abstract

BACKGROUND

The recent emergence of wearable devices has made feasible the passive gathering of intensive, longitudinal data from large groups of individuals. This form of data is effective at capturing physiological changes between participants (interindividual variability) and changes within participants over time (intraindividual variability). The emergence of longitudinal datasets provides an opportunity to quantify the contribution of such longitudinal data to the control of these sources of variability for applications such as responder analysis, where traditional, sparser sampling methods may hinder the categorization of individuals into these phenotypes.

OBJECTIVE

This study aimed to quantify the gains made in statistical power and effect size among statistical comparisons when controlling for interindividual variability and intraindividual variability compared with controlling for neither.

METHODS

Here, we test the gains in statistical power from controlling for interindividual and intraindividual variability of resting heart rate, collected in 2020 for over 40,000 individuals as part of the TemPredict study on COVID-19 detection. We compared heart rate on weekends with that on weekdays because weekends predictably change the behavior of most individuals, though not all, and in different ways. Weekends also repeat consistently, making their effects on heart rate feasible to assess with confidence over large populations. We therefore used weekends as a model system to test the impact of different statistical controls on detecting a recurring event with a clear ground truth. We randomly and iteratively sampled heart rate from weekday and weekend nights, controlling for interindividual variability, intraindividual variability, both, or neither.

RESULTS

Between-participant variability appeared to be a greater source of structured variability than within-participant fluctuations. Accounting for interindividual variability through within-individual sampling required 40× fewer pairs of samples to achieve statistical significance with 4× to 5× greater effect size at significance. Within-individual sampling revealed differential effects of weekends on heart rate, which were obscured by aggregated sampling methods.

CONCLUSIONS

This work highlights the leverage provided by longitudinal, within-individual sampling to increase statistical power among populations with heterogeneous effects.

摘要

背景

可穿戴设备的近期出现使得从大量个体中被动收集密集的纵向数据成为可能。这种数据形式在捕捉参与者之间的生理变化(个体间变异性)以及参与者随时间的变化(个体内变异性)方面很有效。纵向数据集的出现为量化此类纵向数据对控制这些变异性来源在诸如反应者分析等应用中的贡献提供了机会,在反应者分析中,传统的、更稀疏的采样方法可能会阻碍将个体分类为这些表型。

目的

本研究旨在量化在控制个体间变异性和个体内变异性时与不进行控制相比,统计比较中统计功效和效应大小的提升。

方法

在此,我们测试了在2020年作为COVID-19检测的TemPredict研究的一部分为超过40000人收集的静息心率的个体间变异性和个体内变异性控制所带来的统计功效提升。我们将周末的心率与工作日的心率进行比较,因为周末可预测地改变大多数个体(尽管不是全部)的行为,且方式不同。周末也会持续重复,使得它们对心率的影响能够在大量人群中自信地进行评估。因此,我们使用周末作为模型系统来测试不同统计控制对检测具有明确真实情况的重复事件的影响。我们从工作日和周末夜晚随机且迭代地采样心率,控制个体间变异性、个体内变异性、两者都控制或两者都不控制。

结果

参与者之间的变异性似乎比参与者内部的波动是更大的结构化变异性来源。通过个体内采样控制个体间变异性所需的样本对数量减少40倍,在达到显著性时效应大小增大4至5倍。个体内采样揭示了周末对心率的不同影响,而这些影响被汇总采样方法所掩盖。

结论

这项工作突出了纵向个体内采样在具有异质性效应的人群中提高统计功效方面所提供的优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28c4/12138295/7ad560c5b5db/jmir_v27i1e60284_fig1.jpg

相似文献

本文引用的文献

2
Sleep and Alcohol Use Patterns During Federal Holidays and Daylight Saving Time Transitions in the United States.
Front Physiol. 2022 Jul 11;13:884154. doi: 10.3389/fphys.2022.884154. eCollection 2022.
3
The performance of wearable sensors in the detection of SARS-CoV-2 infection: a systematic review.
Lancet Digit Health. 2022 May;4(5):e370-e383. doi: 10.1016/S2589-7500(22)00019-X.
6
Acute electrical, autonomic and structural effects of binge drinking: Insights into the 'holiday heart syndrome'.
Int J Cardiol. 2021 May 15;331:100-105. doi: 10.1016/j.ijcard.2021.01.071. Epub 2021 Feb 3.
7
Characterizing COVID-19 and Influenza Illnesses in the Real World via Person-Generated Health Data.
Patterns (N Y). 2020 Dec 13;2(1):100188. doi: 10.1016/j.patter.2020.100188. eCollection 2021 Jan 8.
8
Feasibility of continuous fever monitoring using wearable devices.
Sci Rep. 2020 Dec 14;10(1):21640. doi: 10.1038/s41598-020-78355-6.
9
Pre-symptomatic detection of COVID-19 from smartwatch data.
Nat Biomed Eng. 2020 Dec;4(12):1208-1220. doi: 10.1038/s41551-020-00640-6. Epub 2020 Nov 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验