Oh Richul, Park Un Chul, Park Kyu Hyung, Park Sang Jun, Yoon Chang Ki
Department of Ophthalmology, Seoul National University College of Medicine, Jongno-gu, Korea (the Republic of).
Department of Ophthalmology, Seoul National University Hospital, Jongno-gu, Korea (the Republic of).
BMJ Open. 2025 May 21;15(5):e100058. doi: 10.1136/bmjopen-2025-100058.
With a growing need for ultra-widefield fundus (UWF) fundus photographs in clinics and AI development, image quality assessment (IQA) of UWF fundus photographs is an important preceding step for accurate diagnosis and clinical interpretation. This study developed deep learning (DL) models for automated IQA of UWF fundus photographs (UWF-IQA model) and investigated intergrader agreements in the IQA of UWF fundus photographs.
We included 4749 UWF images of 2124 patients to set the UWF-IQA dataset. Three independent board-certified ophthalmologists manually assessed each UWF image on four grading criteria (field of view, peripheral visualisation, details of posterior pole and centring of the image) and a final IQA grading using a five-point scale. The UWF-IQA model was developed to predict IQA scores with EfficientNet-B3 as the backbone model. For the test dataset, Cohen's quadratic weighted kappa score was calculated to evaluate intergrader agreements and agreements between predicted IQA scores and manual gradings.
Development and test dataset consisted of 3790 images from 1699 patients and 959 images of 425 patients, respectively, without statistical differences in IQA gradings. The average agreement between the UWF-IQA model and manual graders was 0.731, while the average of intergrader agreements among manual graders was 0.603 (Cohen's weighted kappa score). Posterior pole grading showed the highest average agreements (0.838) between the UWF-IQA model and manual graders, followed by final grading (0.788), centring of the image (0.754), peripheral visualisation (0.754) and field of view (0.535).
Predicted IQA scores using the UWF-IQA model showed better agreements with manual graders compared with intergrader agreements. The automated UWF-IQA model offers robust and efficient IQA predictions with the final and subcategory gradings.
随着临床和人工智能开发中对超广角眼底(UWF)照片的需求不断增长,UWF眼底照片的图像质量评估(IQA)是准确诊断和临床解读的重要前置步骤。本研究开发了用于UWF眼底照片自动IQA的深度学习(DL)模型(UWF-IQA模型),并研究了UWF眼底照片IQA中的分级者间一致性。
我们纳入了2124例患者的4749张UWF图像来设置UWF-IQA数据集。三位独立的获得董事会认证的眼科医生根据四个分级标准(视野、周边可视化、后极细节和图像居中)以及使用五点量表进行的最终IQA分级,对每张UWF图像进行人工评估。以EfficientNet-B3作为骨干模型开发UWF-IQA模型来预测IQA分数。对于测试数据集,计算Cohen二次加权kappa分数以评估分级者间一致性以及预测的IQA分数与人工分级之间的一致性。
开发数据集和测试数据集分别由来自1699例患者的3790张图像和425例患者的959张图像组成,IQA分级无统计学差异。UWF-IQA模型与人工分级者之间的平均一致性为0.731,而人工分级者之间的分级者间平均一致性为0.603(Cohen加权kappa分数)。后极分级在UWF-IQA模型与人工分级者之间显示出最高平均一致性(0.838),其次是最终分级(0.788)、图像居中(0.754)、周边可视化(0.754)和视野(0.535)。
与分级者间一致性相比,使用UWF-IQA模型预测的IQA分数与人工分级者显示出更好的一致性。自动化UWF-IQA模型在最终和子类别分级方面提供了强大而高效的IQA预测。