Li Muheng, Li Xia, Safai Sairos, Lomax Antony J, Zhang Ye
Center for Proton Therapy, Paul Scherrer Institut, Villigen, Switzerland.
Department of Physics, ETH Zürich, Zürich, Switzerland.
Med Phys. 2025 Jul;52(7):e17898. doi: 10.1002/mp.17898. Epub 2025 May 21.
In recent advancements in proton therapy, magnetic resonance (MR)-based treatment planning is gaining momentum due to its excellent soft tissue contrast and high potential to minimize extra radiation exposure compared to traditional computed tomography (CT)-based methods. This transition underscores the critical need for accurate MR-to-CT image synthesis, which is essential for precise proton dose calculations.
This study aims to introduce and evaluate the diffusion Schrödinger bridge models (DSBM), an innovative approach for high-quality and efficient MR-to-CT synthesis, in order to improve both the quality and speed of synthetic CT (sCT) image generation.
The DSBM learns the nonlinear diffusion processes between MR and CT data distributions. Unlike traditional diffusion models (DMs), which start synthesis from a Gaussian distribution, DSBM starts from the prior distribution, enabling more direct and efficient synthesis. The model was trained on 46 head-and-neck (HN) MR-CT pairs and 77 brain tumor MR-CT pairs, with 8 and 10 scans used for testing, respectively. Comprehensive evaluations were conducted at both image and dosimetric levels, using metrics such as mean absolute error (MAE), Dice score, voxel-wise proton dose differences, gamma pass rates of clinical plans, and typical dose indices.
For the HN dataset, DSBM achieved a lower MAE of 72.42 9.78 Hounsfield unit (HU) compared to 77.72 9.11 HU with the best baseline approach, and a higher Dice score for bone of 83.32 3.25% compared to 82.55 3.62%, indicating superior anatomical accuracy. Dosimetric evaluations showed a 1%/1 mm gamma pass rate of 95.85 2.99%, surpassing the 95.25 3.09% achieved by the baseline model. For the brain tumor dataset, DSBM outperformed the baseline with an MAE of 91.73 6.86 HU compared to 103.25 9.58 HU, and a Dice score for bone of 82.85 3.88% compared to 81.27 4.59%. DSBM also demonstrated a higher 1%/1 mm gamma pass rate of 97.93 1.82%, confirming its robustness across different anatomical regions. Notably, DSBM achieved these results with very few number of neural function evaluation steps, significantly improving computational efficiency compared to standard DMs.
The DSBM demonstrates superior performance over traditional image synthesis methods in MR-based proton treatment planning. Its ability to generate high-quality sCT images with enhanced speed and accuracy highlights its potential as a valuable and efficient tool in various radiotherapy clinical scenarios.
在质子治疗的最新进展中,基于磁共振(MR)的治疗计划正日益受到关注,因为与传统的基于计算机断层扫描(CT)的方法相比,它具有出色的软组织对比度,并且在将额外辐射暴露降至最低方面具有很高的潜力。这种转变凸显了对准确的MR到CT图像合成的迫切需求,这对于精确的质子剂量计算至关重要。
本研究旨在介绍和评估扩散薛定谔桥模型(DSBM),这是一种用于高质量、高效MR到CT合成的创新方法,以提高合成CT(sCT)图像生成的质量和速度。
DSBM学习MR和CT数据分布之间的非线性扩散过程。与传统的从高斯分布开始合成的扩散模型(DM)不同,DSBM从先验分布开始,从而实现更直接、高效的合成。该模型在46对头颈(HN)MR-CT对和77对脑肿瘤MR-CT对上进行训练,分别使用8次和10次扫描进行测试。在图像和剂量学层面进行了综合评估,使用了平均绝对误差(MAE)、骰子系数、体素级质子剂量差异、临床计划的伽马通过率和典型剂量指数等指标。
对于HN数据集,与最佳基线方法的77.72±9.11亨氏单位(HU)相比,DSBM实现了更低的MAE,为72.42±9.78 HU,并且骨的骰子系数更高,为83.32±3.25%,而基线方法为82.55±3.62%,表明其解剖学准确性更高。剂量学评估显示1%/1毫米伽马通过率为95.85±2.99%,超过了基线模型的95.25±3.09%。对于脑肿瘤数据集,DSBM的MAE为91.73±6.86 HU,优于基线的103.25±9.58 HU,骨的骰子系数为82.85±3.88%,而基线为81.27±4.59%。DSBM还展示了更高的1%/1毫米伽马通过率,为97.93±?1.82%,证实了其在不同解剖区域的稳健性。值得注意的是,DSBM通过极少的神经功能评估步骤就取得了这些结果,与标准DM相比显著提高了计算效率。
在基于MR的质子治疗计划中,DSBM表现出优于传统图像合成方法的性能。它能够以更高的速度和准确性生成高质量的sCT图像,凸显了其作为各种放射治疗临床场景中有价值且高效工具的潜力。 (原文中“97.93 1.82%”处的“ ”疑似有误,未做修改直接翻译)