Thi Quan Minh Nguyet, Van Lai Duy, Tonezzer Matteo, Do Dat Quang, La Duc D
School of Engineering Physics, Hanoi University of Science and Technology (HUST) No 1 Dai Co Viet Street Hanoi City Vietnam.
Institute of Materials Science, Academy of Science and Technology 18 Hoang Quoc Viet Street, Cau Giay District Hanoi City Vietnam.
RSC Adv. 2025 May 22;15(22):17277-17289. doi: 10.1039/d5ra01050k. eCollection 2025 May 21.
This study explores the impact of surfactants on the morphology and photocatalytic performance of VO materials synthesized a hydrothermal method, followed by calcination. Two surfactants, Pluronic P123 and cetrimonium bromide (CTAB), were used, leading to the formation of VO nanosheets (VO-P123) and VO microflowers (VO-CTAB), each exhibiting distinct structural characteristics and photocatalytic efficiencies. The prepared nanosheets are of sizes ranging from a few micrometers and thickness of approximately 50-60, and the flower-like structures have an average diameter of approximately 5 micrometers. The photocatalytic degradation of Methylene Blue (MB) and Rhodamine B (RhB) dyes were evaluated under simulated sunlight. The VO-P123 nanosheets showed superior performance, achieving 96.72% MB degradation in 150 minutes, with a degradation rate constant of 0.92 min, compared to 90.02% for VO-CTAB microflowers (0.51 min). This enhanced performance was attributed to the larger surface area, higher porosity, and optimized structure of the nanosheets, which promoted better dye adsorption and interaction with reactants. In contrast, the degradation of RhB was lower for both structures, with the VO-P123 nanosheets achieving only 18% degradation (rate constant: 0.0014 min) and the VO-CTAB microflowers 46% (rate constant: 0.0071 min). This highlights the challenge of degrading RhB due to its complex molecular structure and higher chemical stability, limiting effective interaction with the catalyst surface. The study emphasizes the significant influence of surfactants on the morphology and photocatalytic performance of VO materials, with VO nanosheets showing promising potential for environmental remediation, particularly in the degradation of organic pollutants like MB. The findings also suggest that optimizing the photocatalyst design could enhance the degradation of more chemically stable pollutants, thereby expanding the scope of applications for clean energy production and environmental protection.
本研究探讨了表面活性剂对采用水热法合成并经煅烧的VO材料的形貌和光催化性能的影响。使用了两种表面活性剂,即普朗尼克P123和十六烷基三甲基溴化铵(CTAB),分别生成了VO纳米片(VO-P123)和VO微花(VO-CTAB),它们各自展现出独特的结构特征和光催化效率。制备的纳米片尺寸在几微米范围内,厚度约为50 - 60,而花状结构的平均直径约为5微米。在模拟阳光下评估了亚甲基蓝(MB)和罗丹明B(RhB)染料的光催化降解情况。VO-P123纳米片表现出优异的性能,在150分钟内实现了96.72%的MB降解,降解速率常数为0.92分钟,相比之下,VO-CTAB微花的降解率为90.02%(0.51分钟)。这种增强的性能归因于纳米片更大的表面积、更高的孔隙率和优化的结构,促进了更好的染料吸附以及与反应物的相互作用。相比之下,两种结构对RhB的降解率都较低,VO-P123纳米片仅实现了18%的降解(速率常数:0.0014分钟),VO-CTAB微花为46%(速率常数:0.0071分钟)。这凸显了降解RhB的挑战,因其复杂的分子结构和更高的化学稳定性,限制了与催化剂表面的有效相互作用。该研究强调了表面活性剂对VO材料的形貌和光催化性能的重大影响,VO纳米片在环境修复方面显示出有前景的潜力,特别是在降解像MB这样的有机污染物方面。研究结果还表明,优化光催化剂设计可以增强对化学稳定性更高的污染物的降解,从而扩大清洁能源生产和环境保护的应用范围。