Pietrangeli T, Foffi R, Stocker R, Ybert C, Cottin-Bizonne C, Detcheverry F
Institut Lumière Matière, University of Lyon, Université Claude Bernard Lyon 1, CNRS, F-69622 Villeurbanne, France.
ETH Zurich, Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, Zurich, Switzerland.
Phys Rev Lett. 2025 May 9;134(18):188303. doi: 10.1103/PhysRevLett.134.188303.
Dispersal is essential to the plethora of motile microorganisms living in porous environments, yet how it relates to movement patterns and pore space structure remains largely unknown. Here we investigate numerically the long-time dispersal of a run-and-tumble microorganism that remains trapped at solid surfaces and escapes from them by tumbling. We find that dispersal and mean run time are connected by a universal relation, that applies for a variety of porous microstructures and swimming strategies. We explain how this generic dependence originates in the invariance of the mean free path with respect to the movement pattern, and we discuss the optimal strategy that maximizes dispersal. Finally, we extend our approach to microorganisms moving along the surface. Our results provide a general framework to quantify dispersal that works across the vast diversity of movement patterns and porous media.
扩散对于生活在多孔环境中的大量可移动微生物至关重要,然而它与运动模式和孔隙空间结构之间的关系在很大程度上仍然未知。在这里,我们通过数值方法研究了一种在固体表面被困住并通过翻滚逃脱的随机游走微生物的长期扩散。我们发现扩散和平均游动时间通过一种通用关系相联系,这种关系适用于各种多孔微结构和游动策略。我们解释了这种一般依赖性如何源于平均自由程相对于运动模式的不变性,并讨论了使扩散最大化的最优策略。最后,我们将我们的方法扩展到沿表面移动的微生物。我们的结果提供了一个通用框架,用于量化在各种各样的运动模式和多孔介质中起作用的扩散。