Suppr超能文献

基于深度学习的多模态特征交互引导融合:增强晚期肺腺癌中表皮生长因子受体的评估

Deep Learning-Based Multimodal Feature Interaction-Guided Fusion: Enhancing the Evaluation of EGFR in Advanced Lung Adenocarcinoma.

作者信息

Xu Junhui, Feng Bao, Chen Xiangmeng, Wu Fei, Liu Yu, Yu Zhaole, Lu Senliang, Duan Xiaobei, Chen Xiaojuan, Li Kunwei, Zhang Weibin, Dai Xisheng

机构信息

School of Automation, Guangxi University of Science and Technology, Liuzhou, Guangxi, China (J.X., Z.Y., X.D.).

Laboratory of Artificial Intelligence of Biomedicine, Guilin University of Aerospace Technology, Guilin, Guangxi, China (B.F., Y.L., S.L.).

出版信息

Acad Radiol. 2025 Sep;32(9):5585-5595. doi: 10.1016/j.acra.2025.04.071. Epub 2025 May 22.

Abstract

RATIONALE AND OBJECTIVES

The aim of this study is to develop a deep learning-based multimodal feature interaction-guided fusion (DL-MFIF) framework that integrates macroscopic information from computed tomography (CT) images with microscopic information from whole-slide images (WSIs) to predict the epidermal growth factor receptor (EGFR) mutations of primary lung adenocarcinoma in patients with advanced-stage disease.

MATERIALS AND METHODS

Data from 396 patients with lung adenocarcinoma across two medical institutions were analyzed. The data from 243 cases were divided into a training set (n=145) and an internal validation set (n=98) in a 6:4 ratio, and data from an additional 153 cases from another medical institution were included as an external validation set. All cases included CT scan images and WSIs. To integrate multimodal information, we developed the DL-MFIF framework, which leverages deep learning techniques to capture the interactions between radiomic macrofeatures derived from CT images and microfeatures obtained from WSIs.

RESULTS

Compared to other classification models, the DL-MFIF model achieved significantly higher area under the curve (AUC) values. Specifically, the model outperformed others on both the internal validation set (AUC=0.856, accuracy=0.750) and the external validation set (AUC=0.817, accuracy=0.708). Decision curve analysis (DCA) demonstrated that the model provided superior net benefits(range 0.15-0.87). Delong's test for external validation confirmed the statistical significance of the results (P<0.05).

CONCLUSION

The DL-MFIF model demonstrated excellent performance in evaluating and distinguishing the EGFR in patients with advanced lung adenocarcinoma. This model effectively aids radiologists in accurately classifying EGFR mutations in patients with primary lung adenocarcinoma, thereby improving treatment outcomes for this population.

摘要

原理与目的

本研究旨在开发一种基于深度学习的多模态特征交互引导融合(DL-MFIF)框架,该框架将计算机断层扫描(CT)图像的宏观信息与全切片图像(WSIs)的微观信息相结合,以预测晚期疾病患者原发性肺腺癌的表皮生长因子受体(EGFR)突变。

材料与方法

分析了来自两个医疗机构的396例肺腺癌患者的数据。将243例患者的数据按6:4的比例分为训练集(n = 145)和内部验证集(n = 98),并将来自另一个医疗机构的另外153例患者的数据作为外部验证集。所有病例均包括CT扫描图像和WSIs。为了整合多模态信息,我们开发了DL-MFIF框架,该框架利用深度学习技术来捕捉源自CT图像的放射组学宏观特征与从WSIs获得的微观特征之间的相互作用。

结果

与其他分类模型相比,DL-MFIF模型获得了显著更高的曲线下面积(AUC)值。具体而言,该模型在内部验证集(AUC = 0.856,准确率 = 0.750)和外部验证集(AUC = 0.817,准确率 = 0.708)上均优于其他模型。决策曲线分析(DCA)表明该模型提供了更高的净效益(范围为0.15 - 0.87)。外部验证的德龙检验证实了结果的统计学意义(P < 0.05)。

结论

DL-MFIF模型在评估和区分晚期肺腺癌患者的EGFR方面表现出色。该模型有效地帮助放射科医生准确分类原发性肺腺癌患者的EGFR突变,从而改善该人群的治疗效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验