Lingens Lasse, Lill Yoriko, Nalabothu Prasad, Benitez Benito K, Mueller Andreas A, Gross Markus, Solenthaler Barbara
Department of Computer Science, ETH Zurich, Zurich, Switzerland.
Department of Oral and Craniomaxillofacial Surgery, University Hospital Basel and University Children's Hospital Basel, Basel, Switzerland.
Int J Comput Assist Radiol Surg. 2025 Jul;20(7):1471-1479. doi: 10.1007/s11548-025-03396-z. Epub 2025 May 24.
This study investigates the effectiveness of synthetic training data in predicting 2D landmarks for 3D intraoral reconstruction in cleft lip and palate patients. We take inspiration from existing landmark prediction and 3D reconstruction techniques for faces and demonstrate their potential in medical applications.
We generated both real and synthetic datasets from intraoral scans and videos. A convolutional neural network was trained using a negative-Gaussian log-likelihood loss function to predict 2D landmarks and their corresponding confidence scores. The predicted landmarks were then used to fit a statistical shape model to generate 3D reconstructions from individual images. We analyzed the model's performance on real patient data and explored the dataset size required to overcome the domain gap between synthetic and real images.
Our approach generates satisfying results on synthetic data and shows promise when tested on real data. The method achieves rapid 3D reconstruction from single images and can therefore provide significant value in day-to-day medical work.
Our results demonstrate that synthetic training data are viable for training models to predict 2D landmarks and reconstruct 3D meshes in patients with cleft lip and palate. This approach offers an accessible, low-cost alternative to traditional methods, using smartphone technology for noninvasive, rapid, and accurate 3D reconstructions in clinical settings.
本研究调查合成训练数据在预测唇腭裂患者三维口腔内重建的二维地标方面的有效性。我们从现有的面部地标预测和三维重建技术中汲取灵感,并展示它们在医学应用中的潜力。
我们从口腔扫描和视频中生成了真实和合成数据集。使用负高斯对数似然损失函数训练卷积神经网络,以预测二维地标及其相应的置信度分数。然后,使用预测的地标拟合统计形状模型,从单个图像生成三维重建。我们分析了该模型在真实患者数据上的性能,并探索了克服合成图像和真实图像之间域差距所需的数据集大小。
我们的方法在合成数据上产生了令人满意的结果,并且在真实数据上进行测试时显示出前景。该方法可以从单个图像快速进行三维重建,因此可以在日常医疗工作中提供重要价值。
我们的结果表明,合成训练数据对于训练模型以预测唇腭裂患者的二维地标和重建三维网格是可行的。这种方法提供了一种可访问的、低成本的传统方法替代方案,利用智能手机技术在临床环境中进行无创、快速和准确的三维重建。