Riccardi Nicholas, Teghipco Alex, Newman-Norlund Sarah, Newman-Norlund Roger, Rangus Ida, Rorden Chris, Fridriksson Julius, Bonilha Leonardo
Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA.
Department of Psychology, University of South Carolina, Columbia, SC, USA.
Commun Biol. 2025 May 25;8(1):802. doi: 10.1038/s42003-025-08228-z.
'Brain age' is a biological clock typically used to describe brain health with one number, but its relationship with established gradients of cortical organization remains unclear. We address this gap by leveraging a data-driven, region-specific brain age approach in 335 neurologically intact adults, using a convolutional neural network (volBrain) to estimate regional brain ages directly from structural MRI without a predefined set of morphometric properties. Six distinct gradients of brain aging are replicated in two independent cohorts. Spatial patterns of accelerated brain aging in older adults quantitatively align with the archetypal sensorimotor-to-association axis of cortical organization. Other brain aging gradients reflect neurobiological hierarchies such as gene expression and externopyramidization. Participant-level correspondences to brain age gradients are associated with cognitive and sensorimotor performance and explained behavioral variance more effectively than global brain age. These results suggest that regional brain age patterns reflect fundamental principles of cortical organization and behavior.
“脑龄”是一种生物钟,通常用一个数字来描述大脑健康状况,但其与已确立的皮质组织梯度之间的关系仍不明确。我们通过在335名神经功能正常的成年人中采用数据驱动的、特定区域的脑龄方法来填补这一空白,使用卷积神经网络(volBrain)直接从结构磁共振成像中估计区域脑龄,而无需预先设定一组形态测量属性。在两个独立队列中复制了六种不同的脑老化梯度。老年人脑加速老化的空间模式在数量上与皮质组织的典型感觉运动到联合轴对齐。其他脑老化梯度反映了神经生物学层次结构,如基因表达和锥体外移。参与者水平与脑龄梯度的对应关系与认知和感觉运动表现相关,并且比整体脑龄更有效地解释了行为差异。这些结果表明,区域脑龄模式反映了皮质组织和行为的基本原理。