Bahrawy Ahmed, Galek Przemyslaw, Gellrich Christin, Niese Nick, Mohamed Mohamed A A, Hantusch Martin, Grothe Julia, Kaskel Stefan
Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, Dresden 01069, Germany.
Leibniz Institute for Solid State and Materials Research Dresden, Helmholtzstraße 20, Dresden 01069, Germany.
ACS Nano. 2025 Jun 10;19(22):20655-20671. doi: 10.1021/acsnano.5c02035. Epub 2025 May 25.
Iontronic devices link ion-based transport with established electronic systems. Emerging capacitive devices, such as CAPode and G-Cap, feature diode-like rectification and transistor-like switching, respectively, through electrochemical capacitor functionality for enhanced energy storage and signal processing in next-generation low-power electronics. In this study, we present an asymmetric architecture based on nanostructured hexagonal tungsten oxide with significantly enhanced current rectification (with a rectification ratio of 58), providing a performant ionic transistor with 97.5% switching efficiency under only a 1 V bias. Key parameters, such as substrate materials, the mass ratio of the counter electrode to the working electrode, electrolyte composition, and concentration, are evaluated to reach the highest rectification ratios. The final device exhibited remarkable stability, maintaining performance for over 20,000 cycles without degradation. Additionally, integrating a third electrode into the optimized CAPode (termed G-Cap) allowed it to function as a transistor analogue, showing excellent switchability. The third gate electrode in the G-Cap plays a critical role in shifting the working electrode potential to reach the redox potential of tungsten oxide, enhancing the device functionality. As a proof of concept, the CAPodes were integrated into basic and complex logic gates under varying voltages and frequencies up to 1000 mHz, with output signals demonstrating robust performance. In addition, the logic operation metrics revealed a low threshold voltage of 0.4 V and a low power consumption of 2 μW. These results highlight the potential for expanded applications of this device structure.
离子电子器件将基于离子的传输与成熟的电子系统联系起来。新兴的电容式器件,如CAPode和G-Cap,分别通过电化学电容器功能实现了类似二极管的整流和类似晶体管的开关功能,以增强下一代低功耗电子产品中的能量存储和信号处理能力。在本研究中,我们展示了一种基于纳米结构六方氧化钨的不对称架构,其电流整流显著增强(整流比为58),在仅1 V偏压下提供了具有97.5%开关效率的高性能离子晶体管。我们评估了诸如衬底材料、对电极与工作电极的质量比、电解质组成和浓度等关键参数,以达到最高的整流比。最终器件表现出卓越的稳定性,在超过20000次循环中保持性能而不退化。此外,将第三个电极集成到优化后的CAPode(称为G-Cap)中使其能够作为晶体管类似物发挥作用,显示出优异的可切换性。G-Cap中的第三个栅电极在改变工作电极电位以达到氧化钨的氧化还原电位方面起着关键作用,增强了器件功能。作为概念验证,CAPode在高达1000 mHz的不同电压和频率下被集成到基本和复杂逻辑门中,输出信号显示出强大的性能。此外,逻辑操作指标显示阈值电压低至0.4 V,功耗低至2 μW。这些结果突出了这种器件结构扩展应用的潜力。