Liu Yanling, Pan Xinghai, Zhou Zisong, Xiao Yuhang, Mei Hao, Lin Sen, Pu Junhong, Wang Haolun, Wu Hui
Key Laboratory of Advanced Spatial Mechanism and Intelligent Spacecraft, Ministry of Education, School of Aeronautics and Astronautics, Sichuan University, Chengdu, 610065, China.
School of Physical Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China.
Adv Mater. 2025 Aug;37(32):e2503499. doi: 10.1002/adma.202503499. Epub 2025 May 27.
Flexible thermal protection is of great significance in fields facing various environments such as aerospace and electric vehicles. Elastic aerogels with micro-nanofibers as the base unit effectively solve the force-thermal compatibility, optimized the contradiction between mechanical strength and thermal insulation performance, and solves the risk of fragile aerogel. In order to develop elastic aerogels with lower density and better thermal insulation properties. Here, the first one-step preparation of ultralight polyimide microtube aerogel sponges (PMAS) using airflow-induced spinning is reported. PMAS consists of a large number of structurally controllable microtube, resulting in ultralight density (≈50 mg cm), ultralow thermal conductivity (37 mW m·K at 25 °C), and excellent elasticity and fatigue resistance, with no significant attenuation of the maximum stress after 1000 cycles of compression at 80% strain. In addition, PMAS has temperature-invariant dynamic mechanical stability and an operating temperature range from 77 to 573 K. These superior properties enable PMAS to be ideal choice for thermal insulation in extreme environments, thermal runaway in batteries, adsorption and gas filling. Airflow-induced spinning fills the gap in the industrial-scale preparation and material compatibility of microtube, while also providing a promising solution for the universal preparation of microtube structures.
柔性热防护在航空航天和电动汽车等面临各种环境的领域具有重要意义。以微纳纤维为基本单元的弹性气凝胶有效解决了力热兼容性问题,优化了机械强度与隔热性能之间的矛盾,解决了气凝胶易碎的风险。为了开发密度更低、隔热性能更好的弹性气凝胶。在此,报道了首次采用气流诱导纺丝一步制备超轻聚酰亚胺微管气凝胶海绵(PMAS)。PMAS由大量结构可控的微管组成,具有超轻密度(约50毫克/立方厘米)、超低热导率(25℃时为37毫瓦/米·开尔文)以及优异的弹性和抗疲劳性,在80%应变下压缩1000次循环后最大应力无明显衰减。此外,PMAS具有温度不变的动态力学稳定性,工作温度范围为77至573K。这些优异性能使PMAS成为极端环境隔热、电池热失控、吸附和气体填充的理想选择。气流诱导纺丝填补了微管在工业规模制备和材料兼容性方面的空白,同时也为微管结构的通用制备提供了一种有前景的解决方案。