Suppr超能文献

真核生物着丝粒重塑:可塑性、动态性与全着丝粒形成

Eukaryotic Centromere Remodeling: Plasticity, Dynamics, and Holocentromere Formation.

作者信息

Yang Dan, Xiao Zhaoxin, Li Ke, Hou Jiayi, Zhang Fengfeng, Qiao Jianjun, Li Ning, Wen Mingzhang

机构信息

State Key Laboratory of Synthetic Biology, Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Synthetic Biology and Biomanufacturing, Tianjin University, Tianjin, China.

Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing, China.

出版信息

Plant Cell Environ. 2025 Sep;48(9):6691-6703. doi: 10.1111/pce.15652. Epub 2025 May 27.

Abstract

Eukaryotic centromeres highlight the remarkable plasticity of eukaryotic chromosomes through their conserved functionality and sequence divergence. Holocentric chromosomes, where centromere activity is distributed along the entire chromosome length, offer a unique model for investigating the molecular mechanisms underlying adaptive evolution between centromeres and chromosomes. In this review, we summarise and speculate on the multiple changes and prerequisites potentially involved in the evolution of holocentromeres. The interplay between environmental factors, chromosomal rearrangements, and centromere plasticity drives the transition from regional to holocentric characteristics. The centromeric histone H3 (CenH3) protein mediates neocentromere formation by recognising non-centromeric chromosomal regions with appropriate AT content, thereby facilitating chromosome restructuring in the transition from regional to holocentric chromosomes. Dynamic changes in repetitive sequences provide functional sites for centromere assembly, chromosomal recombination and repair and centromere spreading and maturation. Epigenetic modifications maintain functional coordination among multiple centromeric units by modulating chromatin states, CenH3 localisation, and kinetochore assembly. This review provides a comprehensive framework for understanding the evolutionary mechanisms of holocentromeres derived from monocentromere and offers insights into the design of artificial centromeres.

摘要

真核生物的着丝粒通过其保守的功能和序列差异突出了真核生物染色体显著的可塑性。全着丝粒染色体中,着丝粒活性沿整个染色体长度分布,为研究着丝粒与染色体之间适应性进化的分子机制提供了独特模型。在本综述中,我们总结并推测了全着丝粒进化过程中可能涉及的多种变化和前提条件。环境因素、染色体重排和着丝粒可塑性之间的相互作用推动了从区域性着丝粒特征向全着丝粒特征的转变。着丝粒组蛋白H3(CenH3)蛋白通过识别具有适当AT含量的非着丝粒染色体区域介导新着丝粒形成,从而促进从区域性着丝粒染色体向全着丝粒染色体转变过程中的染色体重组。重复序列的动态变化为着丝粒组装、染色体重组与修复以及着丝粒扩展和成熟提供功能位点。表观遗传修饰通过调节染色质状态、CenH3定位和动粒组装维持多个着丝粒单元之间的功能协调。本综述为理解源自单着丝粒的全着丝粒的进化机制提供了全面框架,并为人工着丝粒的设计提供了见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验