Liu Yi-Hung, Trinh Thanh-Tung, Tsai Chia-Fen, Yang Jie-Kai, Lee Chun-Ying, Wu Chien-Te
Institute of Electrical and Control Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
Graduate Institute of Manufacturing Technology, College of Mechanical and Electrical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan.
Biosensors (Basel). 2025 May 4;15(5):289. doi: 10.3390/bios15050289.
The electroencephalography (EEG)-based approach provides a promising low-cost and non-invasive approach to the early detection of pathological cognitive decline. However, current studies predominantly utilize EEGs from resting state (rsEEG) or task-state (task EEG), posing challenges to classification performances due to the unconstrainted nature of mind wandering during resting state or the inherent inter-participant variability from task execution. To address these limitations, this study proposes a novel feature extraction framework, working memory task-induced EEG response (WM-TIER), which adjusts task EEG features by rsEEG features and leverages the often-overlooked inter-state changes of EEGs. We recorded EEGs from 21 AD individuals, 24 MCI individuals, and 27 healthy controls (HC) during both resting and working memory task conditions. We then compared the classification performance of WM-TIER to the conventional rsEEG or task EEG framework. For each framework, three feature types were examined: relative power, spectral coherence, and filter-bank phase lag index (FB-PLI). Our results indicated that FB-PLI-based WM-TIER features provide (1) better AD/MCI versus HC classification accuracy than rsEEG and task EEG frameworks and (2) high accuracy for three-class classification of AD vs. MCI vs. HC. These findings suggest that the EEG-based rest-to-task state transition can be an effective neural marker for the early detection of pathological cognitive decline.
基于脑电图(EEG)的方法为早期检测病理性认知衰退提供了一种很有前景的低成本、非侵入性方法。然而,当前的研究主要使用静息态(rsEEG)或任务态(任务EEG)的脑电图,由于静息态时思维游荡的无约束性质或任务执行过程中固有的个体间变异性,这对分类性能提出了挑战。为了解决这些局限性,本研究提出了一种新颖的特征提取框架,即工作记忆任务诱发的EEG反应(WM-TIER),它通过rsEEG特征调整任务EEG特征,并利用EEG中经常被忽视的状态间变化。我们在静息和工作记忆任务条件下记录了21名阿尔茨海默病(AD)患者、24名轻度认知障碍(MCI)患者和27名健康对照(HC)的脑电图。然后,我们将WM-TIER的分类性能与传统的rsEEG或任务EEG框架进行了比较。对于每个框架,我们检查了三种特征类型:相对功率、频谱相干性和滤波器组相位滞后指数(FB-PLI)。我们的结果表明,基于FB-PLI的WM-TIER特征提供了:(1)比rsEEG和任务EEG框架更好的AD/MCI与HC分类准确率;(2)对AD与MCI与HC进行三类分类的高精度。这些发现表明,基于EEG的从静息态到任务态的转变可以成为早期检测病理性认知衰退的有效神经标志物。