Suppr超能文献

基于原子力显微镜对细胞色素CYP102A1单分子酶活性的监测

AFM-Based Monitoring of Enzymatic Activity of Individual Molecules of Cytochrome CYP102A1.

作者信息

Ivanov Yuri D, Bukharina Natalia S, Shumov Ivan D, Afonin Oleg N, Tatur Vadim Y, Grudo Anna V, Archakov Alexander I

机构信息

Institute of Biomedical Chemistry, 10, Pogodinskaya St., Moscow 119121, Russia.

Foundation of Perspective Technologies and Novations, Moscow 125315, Russia.

出版信息

Biosensors (Basel). 2025 May 10;15(5):303. doi: 10.3390/bios15050303.

Abstract

Herein, we report the use of a nanotechnology-based approach for the study of enzyme-functionalized mica surfaces. Atomic force microscopy (AFM) has been employed for the determination of the catalytic activity of single molecules of heme-containing cytochrome P450 CYP102A1 (CYP102A1) enzyme, which was immobilized on the surface of a mica chip. Height fluctuations in individual molecules of the enzyme were measured under near-native conditions by AFM measurements in liquid using a cantilever with a 10 to 20 nm tip curvature radius. We have found that in the process of enzymatic catalysis, the mean amplitude of height fluctuations in individual enzyme molecules is 1.4-fold higher than that of enzyme molecules in an inactive state. The temperature dependence of the mean amplitude of height fluctuations in cytochrome CYP102A1 has been revealed, and the maximum of this dependence has been observed at 22 °C. The proposed nanotechnology-based approach can be employed in studies of a wide variety of enzymes, which are important for the development of novel diagnostic tests and systems for pharmaceutical analysis. The approach developed in our work will favor further miniaturization of enzyme-based biosensors and the transition from traditional sensors to nanobiosensors.

摘要

在此,我们报告了一种基于纳米技术的方法用于研究酶功能化云母表面。原子力显微镜(AFM)已被用于测定固定在云母芯片表面的含血红素细胞色素P450 CYP102A1(CYP102A1)酶单分子的催化活性。在接近天然条件下,使用尖端曲率半径为10至20 nm的悬臂在液体中通过AFM测量来测定酶单个分子的高度波动。我们发现,在酶促催化过程中,单个酶分子高度波动的平均幅度比处于无活性状态的酶分子高1.4倍。揭示了细胞色素CYP102A1中高度波动平均幅度的温度依赖性,并且在22°C时观察到这种依赖性的最大值。所提出的基于纳米技术的方法可用于研究多种酶,这对于开发新型诊断测试和药物分析系统很重要。我们工作中开发的方法将有助于基于酶的生物传感器进一步小型化,并促进从传统传感器向纳米生物传感器的转变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6514/12109581/6f901e2f6a3f/biosensors-15-00303-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验