Suppr超能文献

基于序数网络的混沌信号改进重构

Improved Reconstruction of Chaotic Signals from Ordinal Networks.

作者信息

Politi Antonio, Ricci Leonardo

机构信息

Department of Physics, University of Aberdeen, Aberdeen AB24 3UE, UK.

Institute for Complex Systems, National Research Council, (ISC-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy.

出版信息

Entropy (Basel). 2025 May 6;27(5):499. doi: 10.3390/e27050499.

Abstract

Permutation entropy is customarily implemented to quantify the intrinsic indeterminacy of complex time series, under the assumption that determinism manifests itself by lowering the (permutation) entropy of the resulting symbolic sequence. We expect this to be roughly true, but, in general, it is not clear to what extent a given ordinal pattern indeed provides a faithful reconstruction of the original signal. Here, we address this question by attempting the reconstruction of the original time series by invoking an ergodic Markov approximation of the symbolic dynamics, thereby inverting the encoding procedure. Using the Hénon map as a testbed, we show that a meaningful reconstruction can also be made in the presence of a small observational noise.

摘要

排列熵通常用于量化复杂时间序列的内在不确定性,其假设是确定性通过降低所得符号序列的(排列)熵来体现。我们期望这大致是正确的,但一般而言,尚不清楚给定的序数模式在多大程度上确实能忠实重建原始信号。在此,我们通过调用符号动力学的遍历马尔可夫近似来尝试重建原始时间序列,从而反转编码过程,以此解决这个问题。以亨农映射作为测试平台,我们表明在存在小观测噪声的情况下也能进行有意义的重建。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a612/12110446/a4e503cbd84a/entropy-27-00499-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验