Xia Junyu, Bajpai Akhilesh K, Liu Yamei, Yu Lele, Dong Yating, Li Feng, Chen Fuxue, Lu Lu, Feng Shini
School of Life Sciences, Shanghai University, Shanghai 200444, China.
Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38103, USA.
Genes (Basel). 2025 May 20;16(5):605. doi: 10.3390/genes16050605.
Autism spectrum disorder (ASD) involves complex interactions between genetic and environmental factors. Recent studies suggest that dysregulation of β-arrestin2 () in the central nervous system is linked to ASD. However, its specific mechanisms remain unknown.
This study employs a systems genetics approach to comprehensively investigate in multiple brain tissues, including the amygdala, cerebellum, hippocampus, and prefrontal cortex, using BXD recombinant inbred (RI) strains. In addition, genetic variance analysis, correlation analysis, expression quantitative trait loci (eQTL) mapping, and functional annotation were used to identify the key downstream targets of , validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blotting (WB).
exhibited expression variations across the four brain regions in BXD mice. eQTL mapping revealed that is cis-regulated, and increased expression levels were significantly correlated with ASD-like symptoms, such as impaired social interactions and abnormal learning and memory. Furthermore, protein-protein interaction (PPI) network analysis, tissue correlation, functional relevance to autism, and differential expression identified eight downstream candidate genes regulated by . The experimental results demonstrated that deletion of led to the downregulation of , , and expression, along with protein kinase A (PKA)-induced hyperactivation of Synapsin I. These findings suggest that may contribute to the pathogenesis of autism by modulating the expression of these genes.
This study highlights the role of in ASD pathogenesis and identifies , , and as key downstream regulators. These findings provide new insights into the molecular mechanisms of ASD and pave the way for novel therapeutic targets.
自闭症谱系障碍(ASD)涉及遗传和环境因素之间的复杂相互作用。最近的研究表明,中枢神经系统中β-抑制蛋白2(β-arrestin2)的失调与ASD有关。然而,其具体机制仍不清楚。
本研究采用系统遗传学方法,利用BXD重组近交(RI)品系,全面研究杏仁核、小脑、海马体和前额叶皮质等多个脑组织中的β-arrestin2。此外,还使用遗传方差分析、相关性分析、表达定量性状位点(eQTL)定位和功能注释来鉴定β-arrestin2的关键下游靶点,并通过定量逆转录聚合酶链反应(qRT-PCR)和蛋白质免疫印迹法(WB)进行验证。
β-arrestin2在BXD小鼠的四个脑区中表现出表达差异。eQTL定位显示β-arrestin2受顺式调控,其表达水平的升高与类似ASD的症状显著相关,如社交互动受损以及学习和记忆异常。此外,蛋白质-蛋白质相互作用(PPI)网络分析、组织相关性、与自闭症的功能相关性以及差异表达鉴定出了八个受β-arrestin2调控的下游候选基因。实验结果表明,β-arrestin2的缺失导致Syntaxin 1、Synapsin I和Munc18-1的表达下调,以及蛋白激酶A(PKA)诱导的Synapsin I过度激活。这些发现表明,β-arrestin2可能通过调节这些基因的表达而导致自闭症的发病机制。
本研究突出了β-arrestin2在ASD发病机制中的作用,并确定Syntaxin 1、Synapsin I和Munc18-1为关键的下游调节因子。这些发现为ASD的分子机制提供了新的见解,并为新的治疗靶点铺平了道路。