Suppr超能文献

利用纳米等离子体学:纳米晶硅器件中增强光电性能的设计优化

Harnessing Nanoplasmonics: Design Optimization for Enhanced Optoelectronic Performance in Nanocrystalline Silicon Devices.

作者信息

Mahmoudysepehr Mohsen, Sivoththaman Siva

机构信息

Power Solutions Group, Onsemi, Scottsdale, AZ 85250, USA.

Department of Electrical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.

出版信息

Micromachines (Basel). 2025 Apr 30;16(5):540. doi: 10.3390/mi16050540.

Abstract

Nanoplasmonic structures have emerged as a promising approach to address light trapping limitations in thin-film optoelectronic devices. This study investigates the integration of metallic nanoparticle arrays onto nanocrystalline silicon (nc-Si:H) thin films to enhance optical absorption through plasmonic effects. Using finite-difference time-domain (FDTD) simulations, we systematically optimize key design parameters, including nanoparticle geometry, spacing, metal type (Ag and Al), dielectric spacer material, and absorber layer thickness. The results show that localized surface plasmon resonances (LSPRs) significantly amplify near-field intensities, improve forward scattering, and facilitate coupling into waveguide modes within the active layer. These effects lead to a measurable increase in integrated quantum efficiency, with absorption improvements reaching up to 30% compared to bare nc-Si:H films. The findings establish a reliable design framework for engineering nanoplasmonic architectures that can be applied to enhance performance in photovoltaic devices, photodetectors, and other optoelectronic systems.

摘要

纳米等离子体结构已成为解决薄膜光电器件中光捕获限制的一种有前途的方法。本研究探讨了将金属纳米颗粒阵列集成到纳米晶硅(nc-Si:H)薄膜上,以通过等离子体效应增强光吸收。使用时域有限差分(FDTD)模拟,我们系统地优化了关键设计参数,包括纳米颗粒几何形状、间距、金属类型(Ag和Al)、介电间隔层材料和吸收层厚度。结果表明,局域表面等离子体共振(LSPRs)显著放大了近场强度,改善了前向散射,并促进了与有源层内波导模式的耦合。这些效应导致积分量子效率有可测量的提高,与裸nc-Si:H薄膜相比,吸收改善高达30%。这些发现为设计纳米等离子体结构建立了一个可靠的框架,可应用于提高光伏器件、光电探测器和其他光电子系统的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5102/12113791/c5bd777154cf/micromachines-16-00540-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验