Dang Xiangjun, Shao Yongxuan, Liu Haoming, Yang Zhe, Zhong Mingwen, Zhao Huimin, Deng Wu
School of Safety Science and Engineering, Civil Aviation University of China, Tianjin 300300, China.
Tianjin Aviation Equipment Safety and Airworthiness Technology Innovation Center, Tianjin 300300, China.
Sensors (Basel). 2025 May 13;25(10):3075. doi: 10.3390/s25103075.
To advance the hydrogen energy-driven low-altitude aviation sector, it is imperative to establish sophisticated risk assessment frameworks tailored for hydrogen-powered aircraft. Such methodologies will deliver fundamental guidelines for the preliminary design phase of onboard hydrogen systems by leveraging rigorous risk quantification and scenario-based analytical models to ensure operational safety and regulatory compliance. In this context, this study proposes a comprehensive hazard and operability analysis-fuzzy dynamic Bayesian network (HAZOP-FDBN) framework, which quantifies risk without relying on historical data. This framework systematically maps the risk factor relationships identified in HAZOP results into a dynamic Bayesian network (DBN) graphical structure, showcasing the risk propagation paths between subsystems. Expert knowledge is processed using a similarity aggregation method to generate fuzzy probabilities, which are then integrated into the FDBN model to construct a risk factor relationship network. A case study on low-altitude aircraft hydrogen storage systems demonstrates the framework's ability to (1) visualize time-dependent failure propagation mechanisms through bidirectional probabilistic reasoning, and (2) quantify likelihood distributions of system-level risks triggered by component failures. Results validate the predictive capability of the model in capturing emergent risk patterns arising from subsystem interactions under low-altitude operational constraints, thereby providing critical support for safety design optimization in the absence of historical failure data.
为推动氢能驱动的低空航空领域发展,建立针对氢动力飞机的完善风险评估框架势在必行。此类方法将通过利用严格的风险量化和基于场景的分析模型,为机载氢系统的初步设计阶段提供基本指导方针,以确保运行安全和符合法规要求。在此背景下,本研究提出了一种全面的危险与可操作性分析-模糊动态贝叶斯网络(HAZOP-FDBN)框架,该框架无需依赖历史数据即可量化风险。此框架将HAZOP结果中识别出的风险因素关系系统地映射到动态贝叶斯网络(DBN)图形结构中,展示子系统之间的风险传播路径。利用相似性聚合方法处理专家知识以生成模糊概率,然后将其整合到FDBN模型中以构建风险因素关系网络。对低空飞机储氢系统的案例研究表明,该框架能够(1)通过双向概率推理可视化与时间相关的故障传播机制,以及(2)量化由部件故障引发的系统级风险的似然分布。结果验证了该模型在捕捉低空运行约束下子系统相互作用产生的突发风险模式方面的预测能力,从而为在缺乏历史故障数据的情况下进行安全设计优化提供关键支持。