Suppr超能文献

使用双聚类实时检测混合格式测试中的作弊行为。

Using Biclustering to Detect Cheating in Real Time on Mixed-Format Tests.

作者信息

Lee Hyeryung, Vispoel Walter P

机构信息

University of Iowa, USA.

出版信息

Educ Psychol Meas. 2025 May 24:00131644251333143. doi: 10.1177/00131644251333143.

Abstract

We evaluated a real-time biclustering method for detecting cheating on mixed-format assessments that included dichotomous, polytomous, and multi-part items. Biclustering jointly groups examinees and items by identifying subgroups of test takers who exhibit similar response patterns on specific subsets of items. This method's flexibility and minimal assumptions about examinee behavior make it computationally efficient and highly adaptable. To further finetune accuracy and reduce false positives in real-time detection, enhanced statistical significance tests were incorporated into the illustrated algorithms. Two simulation studies were conducted to assess detection across varying testing conditions. In the first study, the method effectively detected cheating on tests composed entirely of either dichotomous or non-dichotomous items. In the second study, we examined tests with varying mixed item formats and again observed strong detection performance. In both studies, detection performance was examined at each timestamp in real time and evaluated under three varying conditions: proportion of cheaters, cheating group size, and proportion of compromised items. Across conditions, the method demonstrated strong computational efficiency, underscoring its suitability for real-time applications. Overall, these results highlight the adaptability, versatility, and effectiveness of biclustering in detecting cheating in real time while maintaining low false-positive rates.

摘要

我们评估了一种实时双聚类方法,用于检测包含二分法、多分法和多部分项目的混合格式评估中的作弊行为。双聚类通过识别在特定项目子集上表现出相似回答模式的考生子群体,将考生和项目联合分组。该方法的灵活性以及对考生行为的最小假设使其计算效率高且适应性强。为了在实时检测中进一步微调准确性并减少误报,在所示算法中纳入了增强的统计显著性检验。进行了两项模拟研究,以评估不同测试条件下的检测情况。在第一项研究中,该方法有效地检测出了完全由二分法或非二分法项目组成的测试中的作弊行为。在第二项研究中,我们检查了具有不同混合项目格式的测试,并再次观察到了强大的检测性能。在两项研究中,实时在每个时间戳检查检测性能,并在三种不同条件下进行评估:作弊者比例、作弊群体规模和受损项目比例。在各种条件下,该方法都展示出了强大的计算效率,突出了其适用于实时应用的特点。总体而言,这些结果凸显了双聚类在实时检测作弊行为时的适应性、通用性和有效性,同时保持了较低的误报率。

相似文献

9
Comparing the Performance of Eight Item Preknowledge Detection Statistics.比较八项预知识检测统计量的性能。
Appl Psychol Meas. 2016 Mar;40(2):83-97. doi: 10.1177/0146621615603327. Epub 2015 Sep 9.

本文引用的文献

1
Biclustering data analysis: a comprehensive survey.双聚类数据分析:全面综述。
Brief Bioinform. 2024 May 23;25(4). doi: 10.1093/bib/bbae342.
5
Detection of Item Preknowledge Using Response Times.利用反应时间检测项目预知识
Appl Psychol Meas. 2020 Jul;44(5):376-392. doi: 10.1177/0146621620909893. Epub 2020 Apr 13.
6
Three New Methods for Analysis of Answer Changes.三种分析答案变化的新方法。
Educ Psychol Meas. 2017 Jan;77(1):54-81. doi: 10.1177/0013164416632287. Epub 2016 Mar 1.
8
A systematic comparative evaluation of biclustering techniques.双聚类技术的系统比较评估
BMC Bioinformatics. 2017 Jan 23;18(1):55. doi: 10.1186/s12859-017-1487-1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验