Suppr超能文献

肿瘤浸润免疫细胞特征评分揭示了结直肠癌的预后生物标志物和治疗靶点。

Tumor-infiltrating immune cell signature score reveals prognostic biomarkers and therapeutic targets for colorectal cancer.

作者信息

Zuo Xiaofei, Long Wujun, Lin Kai, Jia Guiqing

机构信息

Department of Gastrointestinal Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.

v Department of Gastrointestinal Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.

出版信息

Front Immunol. 2025 May 14;16:1583327. doi: 10.3389/fimmu.2025.1583327. eCollection 2025.

Abstract

BACKGROUND

Colorectal cancer (CRC) is one of the leading contributors to cancer-related deaths worldwide, with more than 900,000 new diagnoses and related deaths each year. This study aims to explore the prognostic value of tumor-infiltrating immune cell (TIIC)-related genes in CRC, in order to discover new biomarkers and therapeutic targets.

METHODS

We integrated CRC transcriptome data from public databases to construct and validate a prognostic model and analyzed single-cell RNA sequencing (scRNA-seq) data to classify immune cell subtypes. A suite of computational models was employed to assess TIIC signature scores and to refine the selection of prognostic TIIC-related genes using multiple machine learning techniques-including Random Survival Forest (RSF), LASSO regression, and Cox proportional hazards regression, among others. In addition, pathway enrichment, immune signature difference analyses, and immunotherapy response predictions were performed. Potential biomarkers and therapeutic targets were identified through differential gene analysis, gene set enrichment analysis (GSEA), and copy number variation (CNV) landscape comparisons between high and low TIIC groups.

RESULTS

We identified 137 significant TIIC-RNAs within the CRC microenvironment and developed a prognostic model based on five key TIIC-RNAs. This model, which leveraged machine learning methods such as RSF, LASSO, and Cox regression, demonstrated outstanding performance in survival prediction across TCGA-CRC and external validation datasets, outperforming 22 existing prognostic models. Furthermore, the high TIIC score group showed heightened expression of angiogenesis-related genes, whereas the low score group was enriched for immune response-associated genes. The TIIC signature score was significantly correlated with tumor-infiltrating immune cells, various metabolic characteristics, and chromosomal instability, and it effectively predicted immunotherapy response across diverse cancer types.

CONCLUSION

The findings of this study highlighted the promise of the TIIC signature score in forecasting the outcomes for CRC patients. Additionally, it emphasized its utility in predicting the effects of immunotherapy, thereby enhancing our comprehension of the intricacies within the tumor microenvironment. Further research needs to concentrate on assessing the clinical utility of the TIIC signature score while also confirming its relevance across various populations and treatment contexts.

摘要

背景

结直肠癌(CRC)是全球癌症相关死亡的主要原因之一,每年有超过90万新发病例和相关死亡。本研究旨在探讨肿瘤浸润免疫细胞(TIIC)相关基因在CRC中的预后价值,以发现新的生物标志物和治疗靶点。

方法

我们整合了来自公共数据库的CRC转录组数据,构建并验证了一个预后模型,并分析了单细胞RNA测序(scRNA-seq)数据以对免疫细胞亚型进行分类。采用了一系列计算模型来评估TIIC特征分数,并使用包括随机生存森林(RSF)、LASSO回归和Cox比例风险回归等多种机器学习技术来优化预后TIIC相关基因的选择。此外,还进行了通路富集、免疫特征差异分析和免疫治疗反应预测。通过高、低TIIC组之间的差异基因分析、基因集富集分析(GSEA)和拷贝数变异(CNV)图谱比较,确定了潜在的生物标志物和治疗靶点。

结果

我们在CRC微环境中鉴定出137个显著的TIIC-RNA,并基于五个关键的TIIC-RNA开发了一个预后模型。该模型利用RSF、LASSO和Cox回归等机器学习方法,在TCGA-CRC和外部验证数据集中的生存预测方面表现出色,优于22个现有的预后模型。此外,高TIIC分数组显示血管生成相关基因的表达增加,而低分数组则富含免疫反应相关基因。TIIC特征分数与肿瘤浸润免疫细胞、各种代谢特征和染色体不稳定性显著相关,并有效预测了多种癌症类型的免疫治疗反应。

结论

本研究结果突出了TIIC特征分数在预测CRC患者预后方面的前景。此外,它强调了其在预测免疫治疗效果方面的实用性,从而增强了我们对肿瘤微环境复杂性的理解。进一步的研究需要集中在评估TIIC特征分数的临床实用性,同时确认其在不同人群和治疗背景下的相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ea3/12117586/422db127adfc/fimmu-16-1583327-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验