Cavanagh Amanda, Matthews Megan
School of Life Science, University of Essex - Colchester Campus, Colchester, UK.
Carl R Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
Philos Trans R Soc Lond B Biol Sci. 2025 May 29;380(1927):20240235. doi: 10.1098/rstb.2024.0235.
Crop production must increase to sustain a growing global population, and this challenge is compounded by increased growing season temperatures and extreme heat events that are already causing significant yield losses in staple crops. Therefore, there is an urgent need to develop strategies to adapt crops to withstand the impacts of a warmer climate. Temperature-sensitive vegetative processes fundamentally related to yield, like photosynthesis, will be impacted by warming throughout the growing season, thus strategies to enhance their resilience hold promise to future-proof crops for a warmer world. Here, we summarize three major strategies to enhance C3 photosynthesis above the thermal optimum: enhanced rubisco activation, modified photorespiration and increased rates of ribulose bisphosphate regeneration. We highlight recent experimental evidence demonstrating the efficacy of these strategies, and then use a mechanistic modelling approach to predict the benefit of these engineering strategies on leaf-level carbon assimilation and soybean yield at elevated temperatures. Our approach highlights that these three engineering targets, particularly when combined, can enhance photosynthetic rates and yield under both ambient and elevated temperatures. By targeting multiple aspects of photosynthetic metabolism, we can develop crops that are better equipped to withstand the challenges of a warming climate and contribute to future food security.This article is part of the theme issue 'Crops under stress: can we mitigate the impacts of climate change on agriculture and launch the 'Resilience Revolution'?'.
作物产量必须提高,以维持不断增长的全球人口需求,而生长季节气温上升和极端高温事件使这一挑战更加复杂,这些事件已经导致主粮作物产量大幅损失。因此,迫切需要制定策略,使作物适应更温暖气候的影响。与产量密切相关的对温度敏感的营养过程,如光合作用,在整个生长季节都会受到气候变暖的影响,因此提高其恢复力的策略有望使作物在更温暖的世界中具备适应能力。在此,我们总结了三种在高于最适温度时增强C3光合作用的主要策略:增强核酮糖-1,5-二磷酸羧化酶(Rubisco)的活化、改变光呼吸以及提高1,5-二磷酸核酮糖再生速率。我们强调了最近证明这些策略有效性的实验证据,然后使用机理建模方法预测这些工程策略在高温下对叶片水平碳同化和大豆产量的益处。我们的方法突出表明,这三个工程目标,特别是结合起来时,可以在环境温度和高温下提高光合速率和产量。通过针对光合代谢的多个方面,我们可以培育出更能应对气候变暖挑战的作物,并为未来的粮食安全做出贡献。本文是主题为“受胁迫的作物:我们能否减轻气候变化对农业的影响并发起‘恢复力革命’?”这一特刊的一部分。