Lin Weihao, Zhong Peng, Wei Xindi, Zhu Li, Wu Xuanlong
State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, 116024, People's Republic of China.
Sci Rep. 2025 May 29;15(1):18789. doi: 10.1038/s41598-025-03058-9.
In the simulation analysis of large-scale industrial instruments such as machine tools, in order to ensure simulation accuracy, model parameter correction is necessary. This research presents a machine tool model correction method assisted by the dynamic evolution sequence (DES). The method first introduces a dynamic evolution method to generate a uniformly distributed sequence, replacing the traditional sequence used in Kriging surrogate models, and constructing a more accurate Kriging surrogate model for machine tools. Moreover, replacing the random sequence with a dynamic evolution sequence enhances the search space coverage of the heterogeneous comprehensive learning particle swarm optimization (HCLPSO) algorithm. The results of numerical examples demonstrate that the finite element model, corrected using the proposed method, accurately predicts the true displacement responses of the machine tool. This method offers a new solution for addressing large-scale machine tool static model correction problems.
在对机床等大型工业仪器进行仿真分析时,为确保仿真精度,模型参数校正必不可少。本研究提出了一种由动态演化序列(DES)辅助的机床模型校正方法。该方法首先引入一种动态演化方法来生成均匀分布序列,取代克里金代理模型中使用的传统序列,并为机床构建更精确的克里金代理模型。此外,用动态演化序列取代随机序列可增强异构综合学习粒子群优化(HCLPSO)算法的搜索空间覆盖范围。数值算例结果表明,使用所提方法校正后的有限元模型能够准确预测机床的真实位移响应。该方法为解决大型机床静态模型校正问题提供了一种新的解决方案。