Herrera-Camacho Jose, Tırınk Cem, Parra-Cortés Rosa Inés, Bayyurt Lütfi, Uskenov Rashit, Omarova Karlygash, Makhanbetova Aizhan, Chekirov Kadyrbai, Chay-Canul Alfonso Juventino
Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico.
Department of Animal Science, Igdir University, Faculty of Agriculture, Iğdır, Türkiye.
Vet Med Sci. 2025 Jul;11(4):e70422. doi: 10.1002/vms3.70422.
This study evaluates the effectiveness of XGBoost and LightGBM algorithms for estimating the live weight of Holstein×Zebu crossbred heifers. The study compares the performance of both algorithms using a wide range of biometric measurements and tests various hyperparameter settings. The research results show that the XGBoost algorithm provides almost perfect agreement with an R value of 0.999 on the training set and high performance with an R value of 0.986 on the test set. The LightGBM algorithm also achieved effective results with R values of 0.986 and 0.981 on both training and test sets. The machine learning algorithms used in the current study stand out as having the potential to provide a practical and economical solution for live weight estimation in livestock enterprises and especially for herd management applications in rural areas through input variables such as body measurements, milk yield, etc. However, the obtained results in the current study reveal the potential of machine learning algorithms for live weight estimation in the livestock sector and indicate that advanced research is needed for the optimisation of these algorithms.
本研究评估了XGBoost算法和LightGBM算法在估计荷斯坦×瘤牛杂交小母牛活重方面的有效性。该研究使用广泛的生物特征测量数据比较了两种算法的性能,并测试了各种超参数设置。研究结果表明,XGBoost算法在训练集上的R值为0.999,几乎达到了完美的一致性,在测试集上的R值为0.986,表现出色。LightGBM算法在训练集和测试集上的R值分别为0.986和0.981,也取得了有效的结果。本研究中使用的机器学习算法具有潜力,通过诸如体尺测量、产奶量等输入变量,为畜牧企业的活重估计,特别是农村地区的畜群管理应用提供实用且经济的解决方案。然而,本研究获得的结果揭示了机器学习算法在畜牧领域活重估计方面的潜力,并表明需要进行进一步的研究来优化这些算法。