Suppr超能文献

使用多任务深度学习和多模态磁共振成像预测局部晚期直肠癌的复发

Predicting Recurrence in Locally Advanced Rectal Cancer Using Multitask Deep Learning and Multimodal MRI.

作者信息

Liu Zonglin, Meng Runqi, Ma Qiong, Guan Zhen, Li Rong, Fu Caixia, Cui Yanfen, Sun Yiqun, Tong Tong, Shen Dinggang

机构信息

Department of Radiology, Fudan University Shanghai Cancer Center, 270 Dongan Rd, 270, Xuhui District, Shanghai, 200032, China.

Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.

出版信息

Radiol Imaging Cancer. 2025 May;7(3):e240359. doi: 10.1148/rycan.240359.

Abstract

Purpose To develop and validate a deep multitask network, MultiRecNet, for fully automatic prediction of disease-free survival (DFS) in patients with neoadjuvant chemoradiotherapy (nCRT)-treated locally advanced rectal cancer (LARC). Materials and Methods This retrospective study collected clinical information and baseline multimodal MRI (T2, apparent diffusion coefficient [ADC], , and ) data from patients with LARC after nCRT at three centers between October 2011 and May 2019. Patients from centers 1 and 2 were divided into training, validation, and internal testing sets, while patients from center 3 served as the external testing set. MultiRecNet is capable of simultaneously performing segmentation, classification, and survival prediction tasks within a single framework. Multiple combinations of data from different clinical stages (pretreatment and postoperative) were input into MultiRecNet to generate different models and identify the model with optimal performance. Evaluation metrics included the Dice similarity coefficient (DSC), the area under the receiver operating characteristic curve (AUC), and the Harrell concordance index (C-index) for the segmentation, classification, and survival prediction tasks, respectively. Results The study included 445 patients: 261 in the training set (median age, 60 years [IQR, 53-67 years]; 172 male), 37 in the validation set (median age, 61 years [IQR, 55-68 years]; 30 male), 75 in the internal testing set (median age, 60 years [IQR, 51-67 years]; 45 male), and 72 in the external testing set (median age, 55 years [IQR, 49-61 years]; 38 male). In the internal testing set, the best model based on MultiRecNet (the All model, with T2-weighted imaging, ADC, , , pretreatment clinical indicators, and postoperative pathologic indicators) achieved a DSC of 0.72 for tumor segmentation, an AUC of 0.97 (95% CI: 0.92, >.99) for recurrence or metastasis classification at 3 years, and a C-index of 0.92 for DFS prediction. In the external testing set, the model continued to perform well for survival prediction (C-index = 0.81, < .001). Conclusion The MultiRecNet-based model enabled prognostic prediction in a fully automated end-to-end manner in patients with LARC following nCRT. MR-Imaging, Abdomen/GI, Rectum, Oncology Published under a CC BY 4.0 license.

摘要

目的 开发并验证一种深度多任务网络MultiRecNet,用于全自动预测接受新辅助放化疗(nCRT)的局部晚期直肠癌(LARC)患者的无病生存期(DFS)。材料与方法 这项回顾性研究收集了2011年10月至2019年5月期间三个中心接受nCRT治疗的LARC患者的临床信息和基线多模态MRI(T2、表观扩散系数[ADC]等)数据。中心1和中心2的患者被分为训练集、验证集和内部测试集,而中心3的患者作为外部测试集。MultiRecNet能够在单个框架内同时执行分割、分类和生存预测任务。将来自不同临床阶段(治疗前和术后)的多种数据组合输入到MultiRecNet中,以生成不同的模型并确定性能最佳的模型。评估指标分别包括分割、分类和生存预测任务的Dice相似系数(DSC)、受试者操作特征曲线下面积(AUC)和Harrell一致性指数(C指数)。结果 该研究纳入了445例患者:训练集261例(中位年龄60岁[四分位间距,53 - 67岁];男性172例),验证集37例(中位年龄61岁[四分位间距,55 - 68岁];男性30例),内部测试集75例(中位年龄60岁[四分位间距,51 - 67岁];男性45例),外部测试集72例(中位年龄55岁[四分位间距,49 - 61岁];男性38例)。在内部测试集中,基于MultiRecNet的最佳模型(全模型,包含T2加权成像、ADC等、治疗前临床指标和术后病理指标)在肿瘤分割方面的DSC为0.72,在3年复发或转移分类方面的AUC为0.97(95%CI:0.92,>.99),在DFS预测方面的C指数为0.92。在外部测试集中,该模型在生存预测方面继续表现良好(C指数 = 0.81,<.001)。结论 基于MultiRecNet的模型能够以全自动的端到端方式对接受nCRT治疗的LARC患者进行预后预测。 磁共振成像,腹部/胃肠道,直肠,肿瘤学 根据知识共享署名4.0许可发布。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bb4/12130701/2c38162e9b91/rycan.240359.VA.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验