Suppr超能文献

使用人工智能进行术前肾肿瘤风险评估:从逻辑斯谛回归到Transformer

Preoperative kidney tumor risk estimation with AI: From logistic regression to transformer.

作者信息

Barros Vesna, Abdallah Nour, Ozery-Flato Michal, Dekel Avihu, Raboh Moshiko, Heller Nicholas, Rabinovici-Cohen Simona, Golts Alex, Gentili Amilcare, Lang Daniel, Chaudhary Suman, Satish Varsha, Tejpaul Resha, Eggel Ivan, Guez Itai, Barkan Ella, Müller Henning, Hexter Efrat, Rosen-Zvi Michal, Weight Christopher

机构信息

IBM Research Israel, Haifa, Israel.

The Hebrew University of Jerusalem, Jerusalem, Israel.

出版信息

PLoS One. 2025 May 30;20(5):e0323240. doi: 10.1371/journal.pone.0323240. eCollection 2025.

Abstract

We consider the problem of renal mass risk classification to support doctors in adjuvant treatment decisions following nephrectomy. Recommendation of adjuvant therapy based on the mass appearance poses two major challenges: first, morphologic patterns may sometimes overlap across subtypes of varying risks. Second, interobserver variability is large. These complexities encourage the use of computational models as accurate noninvasive tools to find relevant relationships between individual perioperative renal mass characteristics and patient risk. In addition, recent evidence highlights the importance of clinical context as a promising direction to inform treatment decisions post-nephrectomy. In this work, we aim to identify relevant clinical markers that can be predictive of renal cancer prognosis. As a starting point, we perform a clinical feature ablation study by training a logistic regression baseline model to predict renal cancer patients' eligibility for adjuvant therapy. The training dataset consisted of medical records of 300 individuals with renal tumors who underwent partial or radical nephrectomy between 2011 and 2020. In addition, we evaluate the same task using a transformer-based model pretrained on a much larger dataset of over 300,000 clinical records of individuals from the UK Biobank. Our findings demonstrate the pretrained model's efficacy in knowledge transfer across different populations, with radiographic data from preoperative cross-sectional imaging playing an important role in informing renal risk and treatment decisions.

摘要

我们考虑肾肿块风险分类问题,以辅助医生在肾切除术后的辅助治疗决策。基于肿块外观推荐辅助治疗存在两大挑战:其一,不同风险亚型的形态学模式有时会重叠。其二,观察者间的变异性很大。这些复杂性促使人们使用计算模型作为准确的非侵入性工具,来寻找个体围手术期肾肿块特征与患者风险之间的相关关系。此外,最近的证据凸显了临床背景作为肾切除术后辅助治疗决策的一个有前景方向的重要性。在这项工作中,我们旨在识别可预测肾癌预后的相关临床标志物。作为起点,我们通过训练一个逻辑回归基线模型来预测肾癌患者是否适合接受辅助治疗,从而进行一项临床特征消融研究。训练数据集由2011年至2020年间接受部分或根治性肾切除术的300例肾肿瘤患者的医疗记录组成。此外,我们使用一个基于Transformer的模型对同一任务进行评估,该模型在来自英国生物银行的超过30万份个体临床记录的更大数据集上进行了预训练。我们的研究结果证明了预训练模型在不同人群间知识转移方面的有效性,术前横断面成像的影像学数据在告知肾风险和治疗决策方面发挥着重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cf8/12124753/5fd9583b5d2a/pone.0323240.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验