Suppr超能文献

预测急性骨筋膜室综合征感染风险:基于入院血液指标的列线图模型

Predicting Infection Risk in Acute Compartment Syndrome: A Nomogram Model Based on Admission Blood Indicators.

作者信息

Song JianJun, Liu YueJun, Yang Meng, Li Yan, Hu YueYue

机构信息

Emergency ICU, Gynecology Department, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, People's Republic of China.

Department of Gynecology, Gynecology Department, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, People's Republic of China.

出版信息

Int J Gen Med. 2025 May 26;18:2741-2748. doi: 10.2147/IJGM.S520844. eCollection 2025.

Abstract

PURPOSE

Acute compartment syndrome (ACS) is a serious complication after tibial fracture and it commonly needs fasciotomy, which may affect 20.4% of patients. However, the predictors of infection remain debated. Our purpose aims to explore the role of admission blood indicators in infection in ACS patients.

METHODS

We collected clinical data on ACS patients between Jan. 2015 and Jan 2025. According to whether ACS patients suffer from infection or not, they were divided into two groups. We copy with these data by R language software.

RESULTS

Based on univariate analysis, we found that time from injury to admission, time from injury to surgery, and numerous admission blood indicators were relevant to ACS, but logistic regression analysis showed that neutrophil (NEU), white blood cell (WBC), C-reactive protein (CRP) and time from injury to surgery (all p<0.0001) were predictors for infection in ACS patients. Our nomogram prediction model with 0.995 in AUC with good consistency and good clinical practicality.

CONCLUSION

We found that the levels of NEU, WBC, CRP and time from injury to surgery were predictors for infection in ACS patients. Our nomogram prediction model can efficiently predict infection in ACS patients.

摘要

目的

急性骨筋膜室综合征(ACS)是胫骨骨折后的一种严重并发症,通常需要进行筋膜切开术,这可能影响20.4%的患者。然而,感染的预测因素仍存在争议。我们的目的旨在探讨入院血液指标在ACS患者感染中的作用。

方法

我们收集了2015年1月至2025年1月期间ACS患者的临床数据。根据ACS患者是否发生感染,将他们分为两组。我们使用R语言软件处理这些数据。

结果

基于单因素分析,我们发现受伤至入院时间、受伤至手术时间以及众多入院血液指标与ACS相关,但逻辑回归分析表明,中性粒细胞(NEU)、白细胞(WBC)、C反应蛋白(CRP)和受伤至手术时间(均p<0.0001)是ACS患者感染的预测因素。我们的列线图预测模型AUC为0.995,具有良好的一致性和良好的临床实用性。

结论

我们发现NEU、WBC、CRP水平以及受伤至手术时间是ACS患者感染的预测因素。我们的列线图预测模型可以有效预测ACS患者的感染情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bf6/12124308/a8ad9f6b4307/IJGM-18-2741-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验