Suppr超能文献

可操控的单个纳米金刚石实现活细胞量子多生理学研究

Live cell quantum multiphysiology enabled by a manipulable single nanodiamond.

作者信息

Xu Yang, Yang Yibo, Chen Yuang, Zhu Wenxin, Lyu Shiyang, Zhang Chen, Huang Xingxu, Feng Jiandong

机构信息

Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.

The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.

出版信息

Natl Sci Rev. 2025 Apr 1;12(6):nwaf130. doi: 10.1093/nsr/nwaf130. eCollection 2025 Jun.

Abstract

The patch-clamp technique provides direct insight into electrophysiology. However, probing multiphysiology such as local temperature and electromagnetic field dynamics within a single live cell remains a challenge. Here we report live cell quantum multiphysiology using a manipulable-single-nanodiamond-based electron spin sensor. By electrically trapping and integrating a single nanodiamond onto a glass nanopipette, we achieve its 3D manipulation within a single live cell. This enables the first nanoscale controlled live cell quantum sensing of multiphysiology signals under native conditions, providing direct insight into localized intracellular activities. Our observations reveal a spatial heterogeneity in temperature over different sites within a single cell, indicative of local activity-induced heat production. Furthermore, temporally resolved relaxation measurements effectively capture the intracellular free-radical-mediated local electro-magnetic noise dynamics. We find a number of unexpected fluctuation phenomena of electromagnetic noise that may directly represent different types of intracellular free radical generation dynamics. Live cell quantum multiphysiology bridges the gap between high-physical-sensitivity-quantum sensing with high-spatiotemporal-resolution live cell measurements, opening up a new avenue for accessing cellular function with unprecedented capabilities.

摘要

膜片钳技术为电生理学提供了直接的见解。然而,在单个活细胞内探测多生理学现象,如局部温度和电磁场动力学,仍然是一项挑战。在此,我们报告了使用基于可操纵单纳米金刚石的电子自旋传感器进行活细胞量子多生理学研究。通过将单个纳米金刚石电捕获并集成到玻璃纳米吸管上,我们在单个活细胞内实现了对其的三维操纵。这使得首次在天然条件下对多生理学信号进行纳米级可控的活细胞量子传感成为可能,从而直接洞察局部细胞内活动。我们的观察揭示了单个细胞内不同位点温度的空间异质性,这表明局部活动诱导了热量产生。此外,时间分辨弛豫测量有效地捕捉了细胞内自由基介导的局部电磁噪声动力学。我们发现了许多电磁噪声的意外波动现象,这些现象可能直接代表了不同类型的细胞内自由基产生动力学。活细胞量子多生理学弥合了高物理灵敏度量子传感与高时空分辨率活细胞测量之间的差距,为以前所未有的能力获取细胞功能开辟了一条新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a5/12125982/95dbcd7956a2/nwaf130fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验