Suppr超能文献

基于水平集的CT扫描橡木微观结构图像分割及形态特征分析

Level set-based image segmentation of CT scanned oak micro-structures with an analysis of morphological features.

作者信息

Livani M A, Suiker A S J, Bosco E

机构信息

Department of the Built Environment, Chair of Applied Mechanics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

出版信息

Wood Sci Technol. 2025;59(4):63. doi: 10.1007/s00226-025-01660-8. Epub 2025 May 28.

Abstract

A three-dimensional level set-based image segmentation method is presented for a robust identification and accurate characterization of the different cell types defining complex wood micro-structures. The method can be applied to arbitrary wood species, and in this contribution is elaborated for oak. The evolution of the level set function and the corresponding boundary conditions are rigorously derived from a variational framework based on the Local Chan-Vese energy functional. The application of the level-set image segmentation approach enables to distinguish the cell wall material from the cell cavities. The cell material objects are subsequently segmented into axial cell objects and ray parenchyma cell objects that are oriented in the longitudinal and radial material directions of oak wood, respectively. This additional segmentation step facilitates the collection of statistical information on the inner cell dimensions and wall thickness of axial cells and ray parenchyma cells from images taken across principal material planes of the oak micro-structure. The performance and results of the image segmentation method are analyzed by using as input detailed micro-structural images of two representative oak samples containing a single growth ring, as obtained from X-ray micro-computed tomography experiments. The assessment of the robustness and convergence behaviour of the image segmentation method shows that the method converges very fast into a unique oak micro-structure that is independent of the initial configuration selected. The accuracy of the image segmentation result is shown through a comparison with the results obtained by two other image segmentation methods presented in the literature, and by visualizing and identifying small-scale morphological features within oak growth rings in great detail. The computational cost of the image segmentation method is evaluated by comparing its performance on CPU and GPU hardware. Additionally, a statistical analysis is carried out of the maximum and minimum inner cell diameters and the cell wall thickness of the various axial cells-fibers and axial parenchyma, earlywood vessels, latewood vessels-and ray parenchyma cells defining the micro-structure of the oak growth ring samples. The density histograms constructed for these geometrical parameters provide their statistical spread and most frequent value, which are quite similar for the two oak samples and are in good agreement with other experimental data reported in the literature. The oak micro-structures identified and characterized by the present image segmentation method may serve as input for dedicated finite element models that compute their mechanical/physical behaviour as a function of the geometrical and physical properties of the individual cells.

摘要

提出了一种基于三维水平集的图像分割方法,用于稳健识别和准确表征定义复杂木材微观结构的不同细胞类型。该方法可应用于任意木材种类,本文以橡木为例进行阐述。水平集函数的演化及相应边界条件严格源自基于局部Chan-Vese能量泛函的变分框架。水平集图像分割方法的应用能够区分细胞壁材料和细胞腔。随后将细胞材料对象分割为轴向细胞对象和射线薄壁细胞对象,它们分别沿橡木木材的纵向和径向材料方向排列。这一额外的分割步骤便于从跨越橡木微观结构主要材料平面拍摄的图像中收集关于轴向细胞和射线薄壁细胞的内部细胞尺寸和壁厚的统计信息。通过使用从X射线微观计算机断层扫描实验获得的两个包含单个生长轮的代表性橡木样本的详细微观结构图像作为输入,分析了图像分割方法的性能和结果。对图像分割方法的稳健性和收敛行为的评估表明,该方法能非常快速地收敛到一个与所选初始配置无关的独特橡木微观结构。通过与文献中提出的其他两种图像分割方法所得结果进行比较,并通过非常详细地可视化和识别橡木生长轮内的小规模形态特征,展示了图像分割结果的准确性。通过比较其在CPU和GPU硬件上的性能来评估图像分割方法的计算成本。此外,对定义橡木生长轮样本微观结构的各种轴向细胞(纤维和轴向薄壁组织、早材导管、晚材导管)和射线薄壁细胞的最大和最小内部细胞直径以及细胞壁厚度进行了统计分析。为这些几何参数构建的密度直方图提供了它们的统计分布和最频繁值,这两个橡木样本的结果非常相似,并且与文献中报道的其他实验数据高度一致。通过本图像分割方法识别和表征的橡木微观结构可作为专用有限元模型的输入,这些模型根据单个细胞的几何和物理特性计算其力学/物理行为。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/830f/12119757/7f857402671d/226_2025_1660_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验